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1 Introduction

Random variables are the primary mechanisms by
which one deals with variability, noise and uncertainty
of real-world phenomena, their observations and infer-
ences, in statistical pattern recognition (SPR).

Consider a variable x, which represents the height
of a college student in India. Let us assume that the
height of a students can be anywhere between 150 cm
and 190 cm. i.e, x ∈ [150, 190]. If we randomly select
a student (draw a random sample), we will get a height
between 150 and 190. Hence we call x, the height of
a college student in India, a random variable, which
assumes a specific value from its range, every time we
draw a sample.

Let us assume that we conduct the following experi-
ment: We randomly select a college student from India
and measure his/her height. We can ask several ques-
tions regarding the outcome of our experiment.

• How likely are we to get a student of height, say
172?

• If we repeat the experiment 500 times, how many
samples will have a height greater than 180?

• Are all the height measurements equally likely?

• If not, what is the most likely value for height?

• What is the expected value of height? Is it the same
as above?

• What is the expected value of height, given that the
gender of the sample is, say female?

By the end of this tutorial, you should be able to an-
swer all the above questions (and those at the end) with
clear reasoning. Specifically, the last question is most
interesting from the point of view of pattern classifica-
tion, which asks the inverse question, “what is the most
likely gender of a sample, given that the height is 165?”
Before we dive deeper into the details, we introduce a

few terms that will be useful through the remainder of
this tutorial.

The set of all possible samples in the problem is re-
ferred to as the population. This could be a finite set as
in the case of ‘all college students in India’, or an in-
finite set, say all possible ways in which one can write
the character ‘a’. Conversely, the unit that is selected
from the population in each trial of the experiment is
referred to as a sample. In our example, each college
student is a sample. One might consider a different ex-
periment where each trial involves randomly selecting
a set of 10 students, and the random variable x is the
number of different languages that they speak. Here,
each sample would be ‘a set of 10 students’, and the
‘set of all possible subsets of size 10’ from the students
forms the sample space of x.

The process of selecting a sample is called sampling.
The sampling process can be repeated with replacement
or without replacement, depending on whether a drawn
sample is put back into the population before the next
sample is drawn or not. In most cases, we make the
following assumptions about the samples that are drawn
from a sequence of trials:

1. Independence: The outcome of a particular trial
(the sample that is drawn) has no bearing on the
outcome of the following trials. i.e, the samples
are independent of each other.

2. Identical distribution: The probability that any
particular sample is drawn is the unchanged across
the trials. In other words, the probability distribu-
tion is identical for all trials.

We put the two assumptions together and claim that the
samples in an experiment are independent and identi-
cally distributed (i.i.d. or iid for short). The above as-
sumptions are the primary reasons why we can make
any inference about a population from a relatively small
set of samples drawn from the population. We often as-
sume that the method of sampling is (simple) random
sampling, where every sample in the population has an
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equal chance of being drawn in any trial. Note that for
a finite population, applying random sampling with re-
placement will make the resulting samples, iid.

In the following sections, we deal with two differ-
ent types of random variables: discrete and continuous.
The distinction is based on the nature of values that a
random variable can take. The tools required to deal
with them might also be different, which will be dis-
cussed in detail.

2 Discrete Random Variables

In our initial example, if the heights of students are
measured to the nearest centimeter, the set of values that
x can take are 150, 151, . . . , 190. x will then be a dis-
crete random variable (DRV).

A random variable x is called a discrete random
variable, if the set of possible values that x can take
is countable. The set of values are usually finite, al-
though not necessarily so. A discrete random vari-
able will always take one of the n values in its range,
χ = {v1, v2, . . . , vn} (for now, we assume n to be fi-
nite).

2.1 Probability Mass Function (PMF)

Now, let us consider one of our initial questions: In
our random draw experiment, ‘How likely are we to get
a student of height 172? If our sampling is random,
then the probability of drawing a sample of height 172
depends only on the number of students having height
172 in the population. Let the number of students hav-
ing a height h is nh out of the total population of N
students. The probability that a randomly selected stu-
dent has height h is nh/N , as every sample has an equal
probability of getting selected.

In general, the probability that a discrete random
variable, x takes a value vi (i.e., Pr[x = vi]) is denoted
as pi. We denote the function that maps each value
vi ∈ χ to its occurrence probability, pi, as P (vi). As we
saw, the probability pi can be computed as the fraction
of the population with a value of x = vi. The func-
tion P (.) can be thought of as representing the distribu-
tion of the population over the values in χ, and hence
is called the Probability Distribution Function or the
Probability Mass Function (PMF). To avoid confusion
with similar terms, we will call P (.) as the probability
mass function or PMF in the case of discrete random
variables.

As noted above, each value of pi is a probability and
the PMF should satisfy the following conditions:

∀i, P (vi) ≥ 0, and (1)

n∑

i=1

P (vi) =
n∑

i=1

pi = 1. (2)

Certain parametric forms of the probability mass
function are popular in practice, as they model the pro-
cess of generation of the samples. Figure 1 shows two
popular PMF forms, uniform and binomial.

(a) (b)

Figure 1. (a) uniform and (b) binomial dis-
tributions for PMF.

A discrete random variable is completely character-
ized by its PMF. Any other property of the random vari-
able can be derived completely and precisely from its
PMF. In other words, we can find the answers to all the
questions posed in the introduction, if we can compute
the PMF of the random variable, ‘height of a college
student in India’!!, well, almost all. We will now look
into two of the important properties of a random vari-
able, its expectation and variance.

2.2 Expectation and Variance: µ & σ2

The expected value of a discrete radom variable, x is
defined as:

E [x] ≡ µ =
∑
x∈χ

xP (x) =
n∑

i=1

viP (vi). (3)

What does this expectation tell us? The expected
value is a weighted average of all possible values of x,
weighted by their probabilities. In other words, µ is just
the mean value of x over the entire population. Here are
a couple of other ways in which we can think about µ.

• Assume that each sample in the population has unit
mass, and is placed in space according to the value
of x, v. The expected value, µ, will give you the
centre of mass of the whole population.

• If we are asked to guess the outcome of the experi-
ment over a large number of trials, and if we guess
µ every time, we will make the least error, over-
all, in the MSE sense. That is why we call it the
expected value.
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However, if we were to guess the most likely height
among all students, we will be better off guessing the
mode of the distribution and not its mean . . . ofcourse!!

Now we know the best guess of the outcome of our
experiment. However, can we say anything about the
amount of error we will make? This is precisely what
the variance tells us.

The variance, σ2 of a random variable is defined as:

Var(x) ≡ σ2 = E [(x−µ)2] =
n∑

i=1

(vi−µ)2P (vi). (4)

As you can see, the variance is the mean squared er-
ror (MSE) if you guess the mean. If the mean tells you
about the centre of mass of the population, the vari-
ance tells you how spread out the population is from
the mean. Note that variance only gives you a measure
of spread of the data and not the exact way in which it
is spread. For that you need the complete PMF itself.

One can also represent the variance as:

σ2 = E [(x− µ)2] =
∫ ∞

−∞
(x− µ)2p(x)dx

=
∫

(x2 − 2xµ + µ2)p(x)dx

=
∫

x2p(x)dx− 2µ

∫
xp(x)dx + µ2

∫
p(x)dx

= E [x2]− 2µE [x] + µ2.1

which simplifies to:

σ2 = E [x2]− (E [x])2. (5)

Note: If we compute the square root of the variance,
i.e, RMSE w.r.t µ, we get the standard deviation, σ.

3 Continuous Random Variables

In the previous section, we assumed that the height
measurement of a student is an integer value, making
x a discrete random variable. If we assume that the
height can be measured precisely to any real number
between 150 and 190, the number of values that x can
take will become uncountable. Such random variables,
which usually take any value within a continuous range
are referred to as continuous random variables (CRV).
Note that the number of real numbers in a range are un-
countable. In each trial, the random variable, x, can take
any of the infinite number of values within its range, χ.
The range could also be infinite, i.e. (−∞,∞).

In our example, even though the range is finite
([150, 190]), the number of possible values that x can
take are uncountably infinite. This makes the definition
of probabilities, tricky.

3.1 Probability Density Function (PDF)

Consider the continuous domain equivalent of the
first question that we asked: ‘If we randomly select
a student, how likely are we to get a specific height,
say 172.3413587391, precise up to the picometer or
more?’ Intuitively, we can say that it is extremely
unlikely, well almost impossible, that we will chance
upon a student with that exact height. i.e, Pr[x =
172.3413587391...] = 0. Then what about exactly
172.00...? or any other specific real number between
150 and 190? We have to say they also have the same
plight. To generalize, the probability that a continuous
random variable takes any specific value in its range is
0. Does that mean no event can ever occur?!!

To get around this predicament, we reframe the ques-
tion a bit as follows: ‘How likely are we to select a
student of height within the range [172 − δ, 172 + δ]?
Now there is a non-zero probability that we might get a
number within that range. Based on this, we define the
distribution of samples in the range as follows:

For every continuous random variable, x, there exists
a probability density function, p(x), such that:

∀x, p(x) ≥ 0, and (6)

Pr[x ∈ (a, b)] =
∫ b

a

p(x)dx. (7)

From the second condition, we can also infer that:
∫ ∞

−∞
p(x)dx = 1 (8)

p(xt) gives the limiting value for density of prob-
ability in a small window around the point xt. Note
that the value of p(xt) is not a probability. We always
use lower case p for densities, and upper case P for
functions that give probabilities. The probability den-
sity function (PDF), plays the same role for CRVs as
PMF for DRVs. Note that in theory the PDF need not
be a parametric function, although in practice it always
is.

3.2 Expectation and Variance: µ & σ2

We can extend the definitions of expected value and
variance of a RV from the discrete to continuous domain
as the following integrals:

E [x] ≡ µ =
∫ ∞

−∞
xp(x)dx

Var(x) ≡ σ2 =
∫ ∞

−∞
(x− µ)2p(x)dx.
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These measures also have similar meanings or inter-
pretations as we found for the discrete RVs. To make
the ideas clear, we will consider two examples of PDFs:

3.2.1 Uniform Density

The uniform density function is characterized by the
range within which it is defined as is given by:

U(a, b) =

{ 1
(b−a) if a ≤ x ≤ b

0 otherwise
(9)

µ =
∫ b

a

x

(
1

b− a

)
dx =

1
b− a

∫ b

a

xdx

=
1

b− a

[
x2/2

]b

a
= (b + a)/2,

which is what we expect of the mean of a uniform dis-
tribution between a and b. Similarly, the variance can
shown to be:

σ2 =
(b− a)2

12
(10)

Figure 2(a) shows the plot of a uniform density func-
tion in the range [0, 3].
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Figure 2. (a) uniform and (b) norma densi-
ties for PDF.

3.2.2 Normal Density

The Normal or Gaussian density is one of the most pop-
ular density functions in practice, as it is a good approx-
imation of many real world random processes. The nor-
mal density function, N() has two parameters, µ, and
σ, and is given by:

N(µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 (11)

Figure 2(b) shows a normal density plot: N(0, 3),
within the range [−10, 10]. Note that the support of

a normal density if infinite. The expectation and vari-
ance of the normal density function are in fact, µ and
σ2 themselves.

In addition to what we discussed, there are a large
number of probability distributions for both discrete and
continuous RVs that are used in specific scenarios [1].

4 CDF: Cumulative Distribution Func-
tion

The cumulative distribution function or CDF is de-
rived from the PDF by the integral of the density up to
a point. It is defined as:

C(t) =
∫ t

−∞
p(x)dx. (12)

Not that the CDF gives the total probability that a
continuous random variable takes a value less than a
specific value, t. The CDF is can be expressed in a
parametric form in certain cases, such as the uniform
density:

C(t) =





0 if t < a

(t−a)
(b−a) if a ≤ t ≤ b

1 if t > b

(13)

Note that a PDF of a RV completely specifies its
CDF and vice-versa. However, it is possible that one
of them has a compact parametric representation, while
the other does not. For example, the CDF of the normal
distribution (equation 11) is given by:

cdf(x) =
1
2

(
1 + erf

(
x− µ

σ
√

2

))
, (14)

where erf() is the error function defined by:

erf(x) =
2√
π

∫ x

−∞
e−t2dt. (15)

(a) (b)

Figure 3. (a) normal densities with differ-
ent parameters and (b) the their CDFs [1].

4



There is no closed form representation to the erf ,
and it is often approximated by its Taylor series expan-
sion. Figure 3 shows the normal density function with
four different parameters, and the corresponding cumu-
lative distribution functions.

4.1 Generating Random Numbers

One of the very useful applications of CDFs is
that one can generate random numbers that follow any
given distribution, provided we can compute/estimate
the CDF of the distribution.

Consider a random variable, x that is distributed ac-
cording to a PDF, p(x). Also consider another random
variable, y = C(x), where C(x) is the CDF corre-
sponding to p(x).

Now, consider a small window of x around the point
t, [t − δt, t + δt] (see Figure 4). The value of y corre-
sponding to t will be r = C(t). Moreover, the value of
y corresponding to x = t+δt will be r+δt.p(t), assum-
ing that δt is small, giving p(t + δt) ≈ p(t). Similarly,
C(t− δt) = r − δt.p(t).
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Figure 4. Mapping of a random variable
using the CDF.

In other words, all samples of x within a window of
size 2δt around t will map to a window of size 2δt.p(t)
around C(t) for y. The resulting density of y will be
hence 1/p(t) times the density of x, which is unity. i.e,
y is of uniform density in the range [0, 1].

We just argued that given a random variable x of any
density, the corresponding random variable, y = C(t)
will be U [0, 1]. We can invert this statement and say that
given a random variable y that follows the pdf U [0, 1],
the random variable x = C−1(y) will follow a PDF
with corresponding CDF as C(). In other words given a
set of random numbers yi with uniform density U(0, 1),
we can map it to a set of random variables xi with any
desired PDF using the inverse CDF function !!!

5 Problems

1. Give an example each of probability mass func-
tions with finite and infinite ranges. Show that the
conditions on PMF are satisfied by your example.

2. Show with complete steps that the variance of uni-
form density is given by equation 10. (Hint: use
the expression for variance in equation 5.)

3. Show examples of two density functions (draw the
function plots) that have the same mean and vari-
ance, but clearly different distributions. Plot both
functions in the same graph with different colours.

4. Show that the alternate expression for variance
given in equation 5 holds for discrete random vari-
ables as well.

5. Prove that the mean and variance of a normal den-
sity, N(µ, σ2) are indeed its parameters, µ and σ2.

6. Using the inverse of CDFs, map a set of 10, 000
random numbers from U [0, 1] to follow the follow-
ing pdfs:

(a) Normal density with µ = 0, σ = 3.0.
(b) Rayleigh density with σ = 1.0.
(c) Exponential density with λ = 1.5.

Once the numbers are generated, plot the normal-
ized histograms (the values in the bins should add
up to 1) of the new random numbers with appro-
priate bin sizes in each case; along with their pdfs.
What do you infer from the plots? Note: see rand()
function in C for U [0, INT MAX].

7. Write a function to generate a random number as
follows: Every time the function is called, it gen-
erates 500 new random numbers from U [0, 1] and
outputs their sum.

Generate 50, 000 random numbers by repeatedly
calling the above function, and plot their normal-
ized histogram (with bin-size = 1). What do you
find about the shape of the resulting histogram?
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