
Lec 11: Linear Dimensionality Reduction 11-1

CSE 475: Statistical Methods in AI Monsoon 2018

Lec 11: Linear Dimensionality Reduction

Lecturer: C. V. Jawahar Date: Sep. 10, 2018

In general, we start with a feature representation x
corresponding to a physical phenomena or an object of
interest. (In the case of supervised learning, we also
have a corresponding y. i.e., ((x

i

, y
i

)) In practice, this
x is not the result of very careful selection of measure-
ments/features, These features are either what we could
think of as relevant or what is feasible in practice. There
could be redundancy and correlation within these fea-
tures too. They may not be the best for our problem
also. A problem of interest to us is to find a new feature
representation z, often lower in dimension, as

z = Ux. (11.20)

If x is a d-dimensional vector and z is a k-dimensional
vector (where k < d), U is a k ⇥ d matrix.

Two variants:

• The above linear transformation (matrix multiplica-
tion) leads to a set of “new” features that are “de-
rived” out existing features. New features are lin-
ear combination of existing features. We will have a
closer look at this today. This can be supervised or
unsupervised. i.e., y may be available (supervised)
or unavailable (unsupervised).

• Second direction to create a new lower dimen-
sional representation by selecting only the use-
ful/important features from the original set. This
is a classical subset selection problem, which is hard
to solve. (Similar to your familiar knapsack prob-
lem.) This is not in our scope. Such problems are
attempted with greedy or backtracking algorithms.

Some people distinguish these two carefully as feature

extraction and feature selection. We can also look at
them as dimensionality reduction. Dimensionality reduc-
tion makes the downstream computations e�cient. Some
time storage/memory is also made e�cient through the
dimensionality reduction. If your original x is “raw-data”
(say an image as such represented as a vector), then such
techniques are treated as principled ways to define and
extract features.

When we do the dimensionality reduction, we may be
removing useful information (or noise). Due to this, there
is a minor chance that we may reduce the accuracy of the
down stream task (say classification). In general, dimen-
sionality reduction schemes aim at no major reduction in
accuracy (happy with some increase in accuracy), but in
a lower dimension.

If “noise” (irrelevant information) is removed orsup-
pressed in the entire process, we may expect some in-
crease in the accuracy. At the same time, if we loose
some “ relevant information”, then we may loose the ac-
curacy. But, alas, we do not know what is noise and
what is signal. We would like the machine to figure out
this from the examples/data. If both these problems are
solved independendly (as is the case in the classical ML
schemes), there is noway, we can tell the dimensionality
reduction scheme what is the best to do.

The above equation is for linear dimensionality reduc-
tion. We also have many equivalent non-linear dimen-
sionality reduction schemes. They are mostly not in our
scope.

11.33 PCA

Principal Component Analysis (PCA) is one of the most
popular technique for dimensionality reduction. It is un-
supervised. It can be seen from two di↵erent view points:

• A dimensionality reduction that retains maximum
variance along the new dimensions.

• A representation/compression from which one can
reconstruct the original data with minimal error.

11.33.1 Minimizing Variance

Let u be a dimension on which we want to project the
data x

i

so that we obtain a new representation z
i

that
has maximum variance.

It is easy to see that the mean of the original represen-
tation gets projected to the mean of the new representa-
tion.

z̄ =
1

N

NX

i=1

z
i

=
1

N

NX

i=1

uTx
i

=
1

N
uT

NX

i=1

x
i

= uTµ

Lec 11: Linear Dimensionality Reduction 11-2

We are interested in finding a u that maximizes the
variance after the projection

argmax
1

N

NX

i=1

(z
i

� z̄)2 =
1

N

NX

i=1

(uTx
i

� uTµ)2

argmax
1

N

uT

NX

i=1

[x
i

� µ][x
i

� µ]T
!
u

argmax
1

N
uT⌃u

with the constraint of ||u|| = 1, the solution to this prob-
lem can be seen as the eigen vector corresponding to
the largest eigen value of the covariance matrix ⌃. (see
the derivation somewhere else in the notes.) When the
data is centered or mean is subtracted, one can see that
⌃ = XXT . Where X is a d⇥N data matrix. (Note: may
be we did use the notation in an earlier lecture for the
transpose of this matrix.)

Best dimension to project so as to maximize the vari-
ance is the eigen vector corresponding to the largest eigen
value. The second best will be the second largest one and
so on.

11.33.2 Minimizing Reconstruction Loss

Let u
1

, . . .u
d

be d orthonormal vectors. We can repre-
sent the vectors x as

P
d

i=1 ↵i

u
i

. Where the scalar ↵
i

is
xTu

i

. However, if we use smaller than d basis vectors,
there could be some loss or reconstruction error. Let us
consider the loss when we use only one u. i.e.,

x� uuTx

Sum of the reconstruction loss for all the N data samples
is now:

NX

i=1

||x
i

� uuTx
i

||2

=
NX

i=1

�
xT

i

x
i

+ (uuTx
i

)T (uuTx
i

)� 2xT

i

uuTx
i

�

We would like to minimize this. First term is positive
(non negative). It is independnet of u. Therefore, we
would like to minimize:

NX

i=1

(x
i

TuuTuuTx
i

� 2xT

i

uuTx
i

)

We also know that uTu = 1.

=
NX

i=1

�xT

i

uuTx
i

=
NX

i=1

�uTx
i

xT

i

u = �uT⌃u

Minimizing the reconstruction error now becomes that of
Maximizing

uT⌃u

with our familiar constraint of uTu = 1. This reduces the
solution as the eigen vectors corresponding to the largest
eigen values.

11.33.3 PCA: Algorithm

• Center the data by subtracting the mean µ

• Compute the covariance matrix ⌃ = 1
N

XXT =
1
N

P
N

i=1 xi

xT

i

• Compute eigen values and eigen vectors of ⌃.

• Take the k eigen vectors corresponding to the largest
k eigen values. Keep the eigen vectors as the rows
and create a matrix U of k ⇥ d.

• Compute the reduced dimensional vectors as

z
i

= Ux
i

11.33.3.1 How many eigen vectors?

In practice what should be the value of k? This is often
decided by looking at how much information is lost in
doing the dimensionality reduction. An estimate of this
is P

d

i=k+1 �i

P
d

i=1 �i

Often k is picked such that the above ratio is less than
5% or 10%.

Q: Why this ratio is useful? Can you find an explana-
tion?

11.34 Example: Eigen Face

A classical example/application of PCA is in face recog-
nition and face representation. Let us assume that we are
given N face images each of

p
d ⇥

p
d. We can visualize

this as a d dimensional vector. Assume that our input is
all the faces from a passport o�ce. All the faces are ap-
proximately of the same size. They are all frontal. And
also expression neutral.

• Let us assume that mean µ is subtracted from each
of the face. If all of the inputs were faces, then the
mean is also looking very similar to a face.

• Let the input be x1 . . .xN

be the mean subtracted
faces and X be the d ⇥ N matrix of all these faces.
(Q: Practically which would be larger here? N or
d?)

• We are interested in finding the eigen vectors of the
matrix XXT . Say they are u

1

. . .u
k

. Note that
k  min(N, d).

• We then project each of the inputs x to these new
eigen vectors and obtain a new feature.

z
i

= u
i

Tx i = 1, . . . , k

• The new representation z is obtained like this. You
can also look at this as forming a k ⇥ d matrix U
which has its rows eigen vectors.

• We obtain now a set of compact (k dimensional) rep-
resentation z

i

for each of the input face images x
i

,
where i = 1, . . . , N

11.34.1 Eigen Vectors of XXT from XTX

It is worth to see whether N of d is large more closely. In
many cases N is larger than d. The reverse is also pos-
sible. In the case of eigen faces, it is quite possible that
the image size is say 100 ⇥ 100 (or d = 10000) and N is
only 1000. Let us see how the eigen vectors of XTX and
XXT are related? The first one is a N ⇥N matrix while
the second is a d⇥d matrix. (note that eigen vector com-
putation is a costly numerical computation and a smaller
matrix is clearly preferred. Q: What is the computational
complexity? O(?))

Let us assume that u1, . . .um

are the m eigen vectors
of XTX and v1, . . . ,vm

are the eigen vectors of XXT .
Note that m  min(d,N).

XTXu = �u (11.21)

XXTv = �v (11.22)

Note that u is N ⇥ 1 and v is d ⇥ 1. Assume d >> N .
We are interested in computing v from u.

Let us premultiply both side by XT .

XTXXTv = �Xv

Let us replace XTv by u.

XXTu = �u

The computational procedure can be now:

• Compute the m principal eigen vectors for XXT , say
v1, . . .vm

.

• Compute the eigen vectors of our interest as

u
i

= XTv
i

Q: Write the steps of the Eigen face based face repre-
sentation learning.

11-3

