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14.35 Maximization of Margin

We now know linear classifiers such as perceptron and
logistic regression. We know that if the data is linearly
separable, perceptron algorithm will converge with a fea-
sible solution. i..e, a separating hyper plane. However,
we know that not all separating hyper planes are equally
useful. For example, a plane that “just” classifies a train-
ing sample is not the best. Intuitively this leaves higher
chance for a test sample (even if it is somewhat similar
to the training one) to get misclassified. Conceptually we
prefer a separating hyper plane that is far from all the
samples.

In short, we want to find a separating hyperplane that
maximimzes the margin. That is what support vector
machines (SVM) are. SVMs are very popular classifiers
even today. They have many nice theoretical properties.
The optimization problem is convex and that is a special
advantage.

(A figure missing) We know from the mid school
mathematics that the distance from origin to the line
ax + by + c = 0 is cp

a

2+b

2 . In a similar manner we can

see that distance from origin to wTx + b = 1 is 1�b

||w|| .

Similarly the distance form origin to the wTx + b = �1
is �1�b

||w|| . Or the distace between the two side planes is
2

||w|| .
Thus our objective is to maximize the margin or max-

imize 1
||w|| or minimize 1

2w
Tw.

Indeed the unconstrained minimization of this could
lead to w becoming zero. That is not useful. Also this
problem does not say anything about the samples cor-
rectly classified. We need to add constraints that says
that the samples are correctly classified.

• When y
i

= +1 we would like the samples to be
wTx+ b � +1

• When y
i

= �1 we would like the samples to be
wTx+ b  �1.

• We can combine these two constraints into one by
multiplying y

i

on both side. (Note that when y
i

is
�1 the inequality sign also reverses. i.e.,

y
i

(wTx
i

+ b) � 1 8i

14.35.1 Primal Problem

The SVM problem is therefore

minimize
1

2
wTw

such that
y
i

(wTx
i

+ b) � 1 8i

y
i

2 {�1,+1}

14.36 Solution

The primal problem of interest is

minimize
1

2
wTw

such that
y
i

(wTx
i

+ b) � 1 8i

y
i

2 {�1,+1}

This problem can be solved in many ways. We could
even use gradient descent to solve this. Being convex in
problem, we will obtain the optimal solutions with this.
(You could read the paper: Shai Shalev-Shwartz “Pega-
sos: Primal Estimated sub-GrAdient SOlver for SVM”
(though analysis could be hard, initial sections could be
OK to read/follow, with some background in optimiza-
tion. More over, you can write (or download) 20 line
matlab or similar code and implement svms!!)

14.36.1 Dual Problem

However, the popular problem is a dual version of the
same. (since problem is convex, the optima of the primal
and dual will be the same or duality gap will be zero.).
With no derivation, let us write the dual problem as

maximize

NX
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2

NX
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(14.23)
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with ↵
i

� 0.
Here ↵

i

are the Lagrangian multipliers. (though pop-
ular notation for Lagrangian multipliers is �, SVMs use
↵.)

How did we get this dual problem? A brief explanation
is given at the end of this lecture.

Dual problem is a classical quadratic programming
problem. Many optimization libraries could help in this
regard. Let us not aim for writing our own code for this
at this stage.

The related to w is:

w =
NX

i=1

↵
i

y
i

x
i

Q: How do you find b?

14.37 Interpretations

If we had removed some of the training samples, those are
away from the side planes, the solution will not change.
(why?) The solution depends only on the samples that
are hard to classify i.e., the samples on the side planes.

When we solve the dual problem, the ↵s are sparse.
i.e., only some samples have impact on the final solution.

Support Vectors Support vectors are the ones where
↵
i

is non zero.
At the test time, we just need to test the sign ofwTx+b

and decide whether it is positive or negative class. i.e.,
decide as

sign(
NX

i=1

↵
i

y
i

xT

i

x+ b) (14.24)

Dot Products Everywhere Another important thing
to note is that the samples appear only as dot product in
both training (the optimization problem equation 14.23)
and the testing (equation 14.24). This is very important
and we exploit this smartly when we extend the linear
SVMs to nonlinear SVMs using Kernels.

Number of SVs . Assume we do a leave one out test-
ing (LOO). When we leave a non-SV sample and test on
it, they all will be correctly classified. Zero error. At
the same time if we leave a SVs, and train the solution
(i.e., w, b) could change leading to an error. Therefore an
upper bound on the error is

#SV

N

14.38 Soft Margin SVMs

We made a strong assumption that the samples are lin-
early separable. That is too restrictive in practice. Let
us relax that by allowing a penalty ⇠

i

is the constraint is
violated.

• When y
i

= +1 we would like the sameples to be
wTx � +1� ⇠

i

• When y
i

= �1 we would like the sameples to be
wTx  �1 + ⇠

i

.

• We can combine these two constraints into one by
multiplying y

i

on both side. (like for hard margin
SVM) i.e.,

y
i

(wTx
i

+ b) � 1� ⇠
i

8i

Indeed if ⇠
i

s are all zero, we will have our hard margin
SVM that we saw already. Our new problem of interest
is now to minimize both wTw and

P
N

i=1 ⇠i. There are
two quantities to simultaneously minimize. We balance
the relative importance of these two terms with a non-
negative constant C. Our problem is now

minimize
1

2
wTw + C

NX

i=1

⇠
i

such that
y
i

(wTx
i

) � 1� ⇠
i

8i
If C is too small (say zero), we are easily allowing vio-

lations. i.e., the algorithm will look for large margin but
discard the concern of violations in the separability. If C
is too large, then violations are taken too seriously and
not the margin. The parameter C is one that one may
have to set in the SVM implementations.

Implementation We know how to implement many of
the algorithms that we studied. However, SVMs are not
that easy in practice. There are nice implementations like
libsvm, liblinear etc. and most of the popular libraries
have very good implementations.

Roughly this is what happens:

• Input (x
i

, y
i

) for i = 1, . . . , N .

• Solve a quadratic optimization problem, i.e., the
dual problem of SVM. Return non-zero ↵

i

or the
lagrangians corresponding to the support vectors.

• Given a test sample, compute the class label as
sign(

P
i2SV

↵
i

y
i

x
i

Tx) + b.

There are also nice gradient descent solvers for SVMs
(read pegasos algorithm, which is also extended for non-
liner and softmargin).
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14.39 Variations

We already saw the hard margin SVMs and soft margin
SVMs. In the first case, we insisted that the sameples
should be linearly separable. While in the second we
allowed some violations (eg. some outliers or erroneous
labels). There are other variations also.

For example the penalty term is L1 or L2 norm of ⇠
i

.

L1 : C
NX

i=1

⇠
i

L2 : C
NX

i=1

⇠2
i

(With no technical explanations), minimization of spe-
cific norms leads to a solution that is sparse. i.e., we allow
some violations but only smaller number of samples are
allowed to violate. It is easy to see for L0 norm. But that
is not what is used in practice.

Q: Derive the dual problem for softmargin L1 and L2
SVMs.

14.40 Primal to Dual

Before we end this lecture, let us also have a quick look
how did we arrive at the dual problem from the primal.
Some amount of understanding of primal and dual prob-
lems in optimization is needed to appreciate this fully
(specially to know how the minimization problem became
a maximization problem). Here it is more of a simple
mathematical exercise of how to rewrite the objectives
from primal to dual.

We start with our primal objective of:
Converting the constrained problem to unconstrained

problem we have to minimise

J(w, b,↵) =
1

2
wTw �

NX

i=1

↵
i

⇥
y
i

(wTx
i

+ b)� 1
⇤

where ↵
i

� 0 are the nonnegative Lagrangian multipliers.
The optimality conditions are:

@J(w, b,↵)

@w
= 0 and

@J(w, b,↵)

@b
= 0

The optimality conditions @J(w,b,↵)
@w

= 0 and
@J(w,b,↵)

@b

= 0 leads to

w =
NX
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To find the optimal values of ↵ which can give the
optimal values of J(·),

J(w, b,↵) =
1

2
wTw �
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The third term of the above objective function is zero and

wTw =
NX

i=1

↵
i

y
i

wTx
i

=
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Optimal Hyperplane: Solution(Cont.)
The objective function J

d

(↵) to be maximised becomes

J
d

(↵) =
NX

i=1
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i

� 1

2
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Thus find maxima of J
d

(↵) subject to
P

N

i=1 ↵i

y
i

= 0 and
↵
i

� 0.

14.40.1 Discussions(*)

Minima of J(w, b,↵) is same as Maxima of J
d

(↵). Why?

A small detour and explanation:Primal Vs Dual .
You may want to read appropriate material from the op-
timization literature to appreciate this fully.

Consider a problem of minimizing f(x) such that
g(x) � 0.

The corresponding lagrangian function is

L(x,�) = f(x)� �Tg(x)

Now,

max
��0

L(x,�) =

⇢
1 if g(x) < 0
f(x) otherwise

Primal Problem:min
x

max
��0

L(x,�)

Dual Problem:max
��0

min
x

L(x,�)

A primal problem of minimization over x became a max-
imization problem over the Lagrangians �.


