CSE 475: Statistical Methods in AI

Lec 15: Kernels and Nonlinear SVMs

Lecturer: C. V. Jawahar

Monsoon 2018

Date: Sep. 27, 2018

15.41 Kernels and Feature Maps

We had seen the idea of dimensionality reduction in the
past. We had seen PCA. We can also have many other di-
mensionality transformation techniques. The idea is that
with an appropriate feature transformation the problem
becomes “simpler” and the classifier/algorithm can do
superior. Why don’t we increase the dimension if that
makes the problem simpler?

Consider a feature transformation (or feature map) as:

P — ¢(p)-

Let us start with a specific example: Let p = [p1, p2
and ¢(p) be [p?, p2,v2p1p2]. You may wonder how this
helps us or why we do this. Wait. We will see the utility
as we move forward. Note the notations. Here the sample
p has two features/dimensions p; and ps.

A number of algorithms in machine learning use dot
product as the basic operation. You already had seen
wTx. The beauty of dot product is that the result is
scalar independent of the dimensionality of the vector.
i.e., the dot product of two vectors in 2D and 3D will be
still a scalar, independent of the dimension. Let us now
compute the dot product of ¢(p) and ¢(q). Here q is also
a 2D vector similar to p. i.e., g = [q1, ¢2]T. We know that
pTq = p1q1 + p2go. Let us compute the dot/scalar/inner
product in the new feature space.

]T

)

o(p) ¢(q) = 1,13, V2p1p2)" (07, 43, V201 02)
= piq} + P55 + 2p1p2qi g

= (p1q1 + p2g2)?

= (p"a)* = k(p,q)

What it says is something simple. If we want to com-
pute the dot products of ¢(p) and ¢(q), what we need to
do is only computing dot product of p and q and then
square it. (indeed, that is true only for this specific ¢())
Note that if we compute ¢(p)T¢(q) like this, we do not
have to really compute ¢() explicitly. That could be a
huge advantage in many situations. Later today, we also
would like to map p into infinite dimension with a ¢().
The advantage of not requiring to compute ¢() will be a
big advantage then.

Feature Map: Here, ¢() is popularly called as a feature
map.

Kernels: The function () is a kernel function.

We saw the kernel function of (pTq)2. This need not
be square. It could be (p”'q)¢. This is a polynomial ker-
nel. With some effort we can write the ¢() corresponding
to this kernel. There are many other potential kernels. A
kernel functions allows us to compute an inner/dot prod-
uct in a new feature space.

Let us consider another ¢() for the same p = [p1, p]7.

Let ¢(p) as [pf, p3, pip2, pop1]. Here ¢() maps from 2D
to 4D. (instead of 2 to 3 as in the previous example).

o) p(q) = [p3, 03, p1p2, P1p2] " (67, 63 142, 21
=Piai + P3a5 + P1p2q1g2 + P1P2q1G2

= (ma +p2QQ)2

= (p"q)* = k(p,q)

There can be many such kernels functions and feature
maps. The above ones were only some examples. Does
it mean that for any «(,) we have a corresponding ¢()?
Can any function be a kernel function? There are many
such curious questions for investigating later.

Q: What about a kernel like (p”q)? + (p”q)3? What
will be the corresponding feature map?

15.41.1 Motivation from Separability

Consider a 2D pattern of two concentric circles (figure
missing). Inner circle is class 1 and outer circle from
class 2. Consider a feature map of the form

o(p) = ¢([p1,p2]”) = [r, 0]"

where (r,0) is the polar coordinates. It is simple to
see that the concentric circles will become separable in
the polar coordinates. (indeed only r could have been
enough.)

We can also consider

o(p) = ¢([p1, p2]") = P}, p3]"

What happens to the concentric circles?

15-1

Lec 15: Kernels and Nonlinear SVMs

The point to note is that a ‘good’ ¢() is going to make
our (classification) problem simpler (say linearly separa-
ble). There are more unanswered questions now. How do
we find the useful ¢() or () for a new problem.

15.42 Kernel Matrix

For many problems we have N sample vectors and we
need to compute all kernel values for all pairs. Popularly,
a kernel matrix K with (4, j) th element as x(x;,x;).

Q: What are the properties of the kernel matrix?
square? symmetric? what more?

15.43 Nonlinear/Kernel SVMs

The notion of Kernels is very nicely related to SVMs.
One may wonder whether SVMs are designed for Kernels
or Kernels are designed for SVMs!!.

Let us now come back to our SVM problem (dual).

N N N

.y 1
mammzzeg 041'*55 E &iajyiijzrxj

i=1 i=1 j=1

(15.25)

N
> =0
=1

with «; > 0. Solving this gives us a linear SVM.

Assume the input data {(x;,y;)} was mapped by ¢(),
leading to {(¢(x;),v:)}. We can find a linear boundary
in the new feature space. And the corresponding decision
boundary in the original space is going to be a nonlinear
one.

This makes the SVM problem (with appropriate con-
straints) as

N L NN
mgxz =3 Z Z iy 0(%:) T p(x;)
)

i=1 j=1

or

N N N
1
maz, Z ai— g Z Z a0y R(%,%x5) (15.26)
i=1

i=1 j=1

Many practical solvers use the precomputed N x N
kernel matrix. This avoids repeated computation of ker-
nel functions. But this necessitates the need to store and
manipulate a N x N matrix while solving. Not very nice
for big data sets.

15-2

15.43.1 Training and Testing

When you solve this nonlinear SVM problem, we get «;
corresponding to the new nonlinear SVM. Or what we
get is the nonlinear SVM in the original feature space.
Typically the output of the training is a set of «a; (that
are 1noN Zero).

At the test time, we only need to evaluate the sign of
wl¢(x)+0b. ie.,

N
sign() _ cayid(x:)" $(x) +b) (15.27)
i=1
In a kernel setting this simply becomes:
N
szgn(z a;yik (X, X) + b) (15.28)
i=1

Please note that «; is sparse and we need to sum this
only over the support vectors. However, at the test time,
we need to have all the support vectors with us and the
number of kernel evaluations is related to the number of
support vectors. This makes the nonlinear SVMs slower
at run time.

In the case of linear SVM, it is possible to compute w
upfront and make each of the testing simple in compu-
tation. (Indeed while training, we still need to solve for
Ozl)

Will the support vectors (and the magnitude of «;)
change with the choice of kernels? Yes. If you change the
kernel, you need to solve the problem again and obtain
the new «;.

15.43.2 Example

Consider an example of XOR problem with
(717 71)a 71; (717 +1)7 +1; (+17 71)7 +1§ (+1a +1)7 -1
Clearly the given four samples are not linearly separable.
Assume we use a kernel ¢(p) = p1p2, the data becomes
immediately separable. +1,—1; —-1,+1; —1,+1;+1 — 1.

A quadratic kernel like x(p, q) = (p7q))? or (pTq+1)?
will have a product term and this can make the XOR
problem separable. (remember the example ¢() we had
at the beginning.)

15.44 Popular Kernels
We appreciate

and kernels
making the

e the utility of feature maps
in“simplifying” the problem (eg.
problem linearly separable).

Lec 15: Kernels and Nonlinear SVMs

e the fact that we do not have to evaluate the feature
map ¢() in practice. A small kernel computation in
the original space is equivalent to the inner product
in the feature space. An important point to note is
that when we use kernels, we do not evaluate ¢() or
even do not have to know the explicit form of ¢()
itself. (Knowing ¢() is still required for the examsl!!)

The feature maps and the kernels that we saw is a toy
kernel in 2D. We saw the ¢() mapping frm 2D to 3D
or 4D. Why not ¢() mapping to an infinite dimensional
space? Many popular kernels do that.!!

Many of the popular kernel functions

Linear Kernel K(x,y)=(x-y)
Polynomial Kernel c K(x,y) = (x-y)¢
Radial Basis Kernel (RBF) : K(x,y) = e 7/Ix~Vl
Sigmoid Kernel : K(x,y) = tanh(y(x-y))

We may not know the “right” kernel for a problem
in our hand always. For example a simple product term
worked for XOR. But a polynomial kernel, which has such
a term is what we may use in practice. In practice we try
multiple popular kernels (i.e., the ones that are in your
library!!) and pick the one that gives us best results.
RBF kernel is often preferred for many problems.

15.44.1 Kernels for more structured data

We can think of kernels as “similarity functions” that can
be plugged into the machine learning algorithm. We had
seen kernels for real vectors. In many problems the inputs
could be objects like (i) strings, (ii) trees or (iii) graphs.
Can kernels be used in such situations?

One can define kernel over strings, trees, graphs etc.
There are many such kernels available in the literature.
This makes it possible to treat objects like graphs the
same way we do the vectors in vector spaces.

Now we can directly work on strings in SVMs. An
SVM can train and test Strings (not just vectors) given
that the appropriate kernels are used. This also makes
the SVM more general and useful.

15.45 Discussions

15.45.1 What is a valid kernel?

We know a number of functions like (p7q)? and (pTq +
1)? as polynomial kernels.

We also saw a number of exponential kernels. Many
of them also correspond to infinite dimensional feature
maps. Remember we do not have to find the feature
maps always.

15-3

Will every kernels function have a corresponding fea-
ture map? or what is a valid kernel?

When Kernel matrix K is PSD, the corresponding ker-
nel is valid. This comes from the Mercer’s theorem.

15.46 What more? (*)

Kernels is an exciting topic. There has been extensive use
of the “kernel trick” in converting a wide range of linear
algorithms into nonlinear form. This takes advantage of
the numerical stability of linear algorithms and expressive
power of nonlinearity. This resulted in algorithms like
Kernel Perceptron, Kernel PCA, Kernel LDA etc. Here
is an additional reading. (not an original exposition; not
very recent)

e https://www.dropbox.com/s/qryziuo3ul43qse/ KERNEL-

REVIEW.pdf?7dl=0

