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16.52 PCA: Summary

• Objective of PCA is to project the data to direction
which best preserves its covariance structure.

• Let us assume that the data is centered
P

i
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2 RN , i = 1, . . . ,M . Centering is done by
subtracting the mean from all the samples.

• Covariance matrix C = 1
M

P
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is first calcu-
lated. C is a N ⇥ N matrix. We avoid the use of
⌃ for the covariance matrix here. Let us not get
it confused with the

P
we use for Summation later

extensively here.

• Assume we have a set of M centered observations:
x
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For linear PCA, we solve the equation

Cv = �v

• This leads to eigen vectors v1,v2, . . .. There are a
total of min(M,N) nonzero eigen values.

• And data is projected to P eigen vectors correspond-
ing to top P < N eigen values of the covariance ma-
trix C.

We see two obvious scopes for improvement:

• PCA does not focus on discriminative nature. It
aims at compression/compaction. There is no ex-
plicit objective that helps separation.

• PCA is linear. A nonlinear dimensionality reduction
could have been more useful.

16.53 LDA

Let us now consider a “discriminative dimensionality re-
duction”. Popularly this is called Linear Discriminant
Analysis or Fisher Discriminant Analysis. This is super-
vised in nature (i.e., we use the class labels y

i

also.).
Let us assume that we have two classes A and B. We

are interested in finding a new feature z = uTx by pro-
jecting on to a new vector u. What are our requirements
so that this is good for the classification?

• After the projection, classes should be compact (i.e.,
samples from A should all come closer and samples
from B should all come closer.). All the samples
come closer to their own means.

• After the projection classes A and B should be well
separated (i.e., they are easily separable.) Means of
the classes become farther.

Let us introduce two new notations i.e., within scatter
and between scatter of the classes. Both are captured as:
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Assume we project onto a new (unknown) direction u.
After the projection S

B

becomes uTS
B

u and S
w

becomes
uTS

W

u
We convert this into a new objective function

J(u) =
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We would like to maximize this quantity. Since the
optima is invariant scaling, let us consider the problem
as

max
u
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such that uTS
W

u = 1. The maximization problem now
(cf: Lagrangian)
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Di↵erentiating with respect to u and equating to zero.

S
B
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W

u (16.29)

Such problems are called generalized eigen value prob-
lems. S

B

u is a vector along [µ
A

� µ
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]. Therefore if S
W

can be inverted,
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]

Many questions are left to you to figure out.
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• How do we extend this to multi class (beyond two
classes)? How does the definition of S

w

and S
B

change?

• How do we get multiple direction/features/u than
one? What is the second best direction, given that
the first one is identified?

• What is the generalized eigen value problem men-
tioned here? Isn’t it LDA also an eigen vector solu-
tion?

16.53.1 Tricks

There are a number of tricks that we could do to make
our life easy. For example, S

W

could be redefined as:

S
W

= S
W

+ ⇢I (16.30)

where ⇢ is a small real quantity. How does this way of
regularizing S

W

help?
Alternatively, one could define S

W

as (see ”Multiple-
Exemplar Discriminant Analysis for Face Recognition”
for details). Here the scatter is computed not with respect
to mean but with respect to each samples and added.
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The new definitions of S
W

is some what di↵erent from
that of the original one. However, both these help in
making the S

W

full rank.
Another trick is to first apply PCA, and then LDA.

This also helps in making S
W

full rank.
Q: Explain how all the three above methods help in prac-

tice?

16.54 Kernel PCA

16.54.1 Preliminaries

We start with the assumption that the data is centered.
Then we know that the covariance matrix is:

C =
1
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and Cv = �v

In Kernel PCA, PCA is applied in the feature space.
The data is mapped into another space, i.e.,

x ! �(x).

Then assuming that data is centered, covariance matrix
can be computed as:
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For KPCA, we need to solve:

CV = �V (16.33)

• We do not want to work with �(·) explicitly. We
can use the kernel (·, ·) and curcumvent this re-
quriement.

• If �(·) maps to an infinite dimension, we will have to
work with 1⇥1 matrices. That is impractical.

• Note that even in such cases, we will have ONLY
 M eigen vectors for C.
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16.54.2 Computing

Taking a dot product with �(x
k

) on both sides of Equa-
tion 16.33: (CV = �V)
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Defining an MxM matrix K by
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we have

M�K↵ = K2↵

M�↵ = K↵
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Thus the vectors ↵ are the eigen vectors of K. ↵ is
a vector of dimension M . Let ↵k be the eigen vector
corresponding to �

k

. The resulting set of eigenvectors
Vk can now be computed as:
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)

16.54.3 Projecting a New Sample

And the projection of a sample �(x) onto this principal
component can be evaluated as:
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16.54.4 Centering

We started with the assumption that the data is centered.
In practice it is not. How do we center the data then?

Let �̂(x
i

) be the centered version of �(x
i

). The (i, j) th
element of the Kernel matrix (corresponding to centered
data) is:
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16.54.5 Basic Procedure

1. First compute the kernel matrix K.

2. Then compute the kernel matrix K̂ corresponding to
the centered data.

3. Compute the eigen values and eigen vectors (↵) of
K̂

4. Use ↵ and the kernel function, evaluate the projec-
tion.

16.54.5.1 Kernel LDA and Beyond (*)

The kernel trick is not limited to PCA. You can also ker-
nelaize algorithms like LDA. Please see:

• B. Scholkof, A Smola and K Muller, Nonlinear Com-
ponent Analysis as a Kernel Eigenvalue Problem for
KPCA

• S. Mika et al, Fisher Discriminant Analysis with Ker-
nels for KLDA

16.55 Application: Face

We had discussed PCA being a useful cue for represent-
ing faces in the form of eigen faces. The dimensionality
reduction techniques like LDA (or Fisher discriminant)
and KPCA are also used in very similar manner.

Q: Write pseudo codes for fisher and KPCA faces.
“Face recognition using kernel Methods” (NIPS 2001)

is provided a nice comparison of these methods on two
benchmarks. (see more details)
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