
CSE 475: Statistical Methods in AI Monsoon 2018

Lec 17: Multi Layer Perceptrons (MLP)
Lecturer: C. V. Jawahar Date: Sep. 3, 2018

17.57 Single Layer Perceptrons

We know about the linear classifiers that classify based
on the simple rule:

Sign(wTx).

Such a classifier classifies a sample into positive class if
wTx is � 0 and negative class if wTx negative. We also
know the perception algorithm that learns the w for a
linear separable problem.

We can look at this as a single layer neural network
with inputs as x1, x2, . . . , xd and the weights (on the
edges) w1, w2, . . . wd gets multiplied and added.

There are two computations that are happening with
in the neuron. (1) Multiply and add (i.e., compute wTx.
(2) pass through the nonlinearity �(), also known as the
activation. In this case the nonlinearity �() is

�(x) =

⇢
+1 if x � 0
�1 if x < 0

Single Layer Perceptron or simple perceptron has
only one layer and the above mentioned activation func-
tion. This can classify samples into two class with a linear
decision boundary.

Activation function: This nonlinearity �() is often
called activation function. A disadvantage of the above
activation function is that it is not di↵erentiable. A lo-
gistic/sigmoid function is often used as the nonlinearity

�(x) =
1

1 + e�x

As shown in the figure 17.3, this function ranges between
0 and 1. And also

Figure 17.3: Sigmoid or Logistic Function �(x) = 1
1+e�x

17.58 MLP

We can connect many single layer neural networks to form
a multi layer neural network. Eventually this models the
transformation of the input x to y. From this point of
view, MLPs can be used for either regression or classifi-
cation.

In the case of classification, it is the practice to repre-
sent the class-ID as a one hot vector. i.e., if there are C
classes, there will be C neurons in the output. The the
desired class is p, then we represent the output as a C
dimensional vector with zero every where except at pth
location.

17.59 Notations

The layer to layer transition in a typical MLP can be
understood as a matrix multiplication followed by the
activation computation.

17-1

Lec 17: Multi Layer Perceptrons (MLP) 17-2

17.60 Design Choices

17.60.1 Why do we need a nonlinearity?

In typical MLPs, it is assumed that all neutrons in a layer
gets connected to all the neurons in the next layer. i.e.,
the layer is fully connected. Say xi is the representation
(output of the neurons at the ith layer and xi+1 is the
representation at the i+1 th layer, then we can compute

xi+1 = �(Wxi)

If there was no nonlinearity, then multiple layer per-
ceptron could have reduced to a single layer perceptron.

Example: If x2 = W0x1 and x3 = W 00x2, then we can
in fact write x3 = W000x1. For some W000 = W0 · W00

17.60.2 Architecture

A typical MLP what is given to us is the input, output
pairs (xi,yi) i = 1, . . . N . Typically x and y are vec-
tors. The number of neurons in the first/input layer is
the dimensionality of x. Number of neurons in the out-
put layer is the dimensionality of y. We have two things
in our control (i) Number of hidden layers (ii) number
of neurons in each hidden layer. Typically, we go for 2
or 3 hidden layers. With number of layers increasing, the
network becomes deep and the learning problem becomes
di�cult due to issues like vanishing gradient.

The number of neurons in each layer is typically larger
than the number of neurons that are required at the in-
put or output layers. Note that typical neural networks
are over parameterized. i.e., there are more neurons and
weights than what is required for solving the problem.
(Indeed it may be possible to prune and get a smaller
network once the network is trained.)

17.60.3 Loss Function

• MSE

• Cross Entropy

• Regularized Losses

17.60.4 Activation Functions

Here are some examples of popular activation functions:

1. Sigmoid

2. tanh

3. ReLu

4. Leakly Relu

17.61 Expressive Power of MLP

17.61.1 AND and OR

Consider the problem of implementing ”AND” and ”OR”
with single layer perceptrons.

x1 x2 AND OR EXOR
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

Let us implement these logics with a single layer neu-
ral network with an activation �(x) = 1 i↵ x � 0.
With the introduction of bias, what we want to lean is
w0, w1andw2.

It can be seen that the following weights satisfy:

• AND: w0 = w1 = w2 =

• OR: w0 = w1 = w2 =

Q: Are they the only possible weights that satisfy?
Q: Can we get a valid solution with no bias?
Q: Can you find weights corresponding to NAND and

NOR?
Q: Here, we used 0, 1 logic. Assume we use �1, 1 rep-

resentation, can you redesign the networks?
If we plot this data, we can see that these are linearly

separable.

17.61.2 EXOR

However, that is not true for EXOR. It can be easily seen
that no solution of the form w2x2 + w1x1 + w0 is going
to work for EXOR.

17.61.3 Representational Power

17.62 Learning

The key question is on “How do we train the neural net-
work.” This is possibly more important than how do we
decide the number of neurons in each layer or number of
layers for a beginner.

Even for an experiences, the learning process is not
that simple. Experience in carefully doing an experiment
is required to get the best.

The popular algorithm for training neural networks is
called “Error Backpropagation Algorithm” or popularly
known as “backpropagation algorithm (BP)”.

CSE 475: Statistical Methods in AI Monsoon 2018

Lec 18: Back Propagation
Lecturer: C. V. Jawahar Date: Oct 11, 2018

18.63 High Level Picture

Let us consider an MLP as a sequence/chain of computa-
tional blocks. (see figure 18.4). In practice, these blocks
have a matrix multiplication and an activation function
of the form xn+1 = �(Wnxn). Here, xn corresponds to
the number of neurons in the n th layer. Note that the
number of neurons in each layer may be di↵erent. This
implies that Wn matrix need not be square. Needless to
say, they could be di↵erent for each layer.

There is a loss layer at the end of the chain. This mod-
ule computes the discrepancy of the last output (xp+1)
with the expected value (y) and compute a scalar loss
measure.

The objective of learning is to find the parameters (i.e.,
W matrices) that minimize the loss.

Assuming that there are p layers, we have matrices
W1, . . .Wp that parameterize the neural network. In
otherwise, we have that many parameters to learn.

Our gradient descent learning rule will allow us to learn
in the form of

Wk+1 Wk � ⌘
@L

@Wk
(18.38)

As in the previous gradient descent schemes, we can start
with a random (or preferably a smart) initialization of the
weight matrices in the zero iteration (initialization) and
update it with every iteration k, until some convergence
criteria is met.

However, the problem is not simple. The loss depends
only on the xp+1 and the true prediction y. Then how
can the partial derivatives in equation 18.38 be nonzero?.
On a closer look, we realize that xp+1 depends on the
previous weight matrix Wp, and also xp.

18.64 Derivatives

Computation of the partial derivatives is not that com-
plex, if we use our familiar chain rule. We make an as-
sumption at this stage:

1. criteria -A For each block, we know how to compute
the partial derivative of the output with respect to
that of input.

i.e.,
@xn+1

@xn

2. criteria -B For each block we know how to compute
the partial derivative of the output with respect to
that of the learnable parameters (say W).

i.e.,
@xn+1

@Wn

Some of the blocks may also have learnable param-
eters ✓ other than weights. In such case, we also
should know the

i.e.,
@xn+1

@✓

We can compute the partial derivative of the loss with
respect to any of the learnable parameters using the chain
rule. This allows us to learn the weights using the gradi-
ent update rule in equation 18.38.

18.64.1 Loss Layer

Consider the final loss layer which computes loss from
xp+1 and y for each sample. An example of the loss is

L =
NX

i=1

||xp+1�y||2 =
NX

i=1

[xp+1�y]T [xp+1�y] (18.39)

In this case @L
xp

is easily computable. Note that y is

constant/fixed. It is part of the data or gound truth.
Q: Do compute @L

xp
for three popular loss functions. (or

loss functions that you think are meaningful.)

18-1

Lec 18: Back Propagation 18-2

Figure 18.4: MLP as a sequence of computational blocks. Input x is same as x1. Output xp+1 is compared to the
true output in the loss layer.

18.64.2 Typical Fully Connected Layer

A typical fully connected later (i.e., all neurons in layer
k is connected to all the neurons in layer k + 1) can be
represented as

xn+1 = �(Wnxn)

To make the equations simpler, let us define a temporary
variable t, and rewrite the above as two steps.

t = Wnxn (18.40)

xn+1 = �(t) (18.41)

We need to compute @xn+1

Wn
and @xn+1

xn
.

These two are nothing but:

@xn+1

@Wn
= �0(t) · @t

@Wn
(18.42)

@xn+1

@xn
= �0(t) · @t

@xn
(18.43)

All the partial derivates on the right side are straight-
forward to compute.

�0(t) is a vector of �0(ti). i.e., element-wise evaluation
of the derivative.

Note: (i) Look some where else for how the matrix vec-
tor derivates are computed. Tom Minka’s notes shared in
the past is worth. (ii) See discussions somewhere else for
How to compute �0() for some of the popular activation
functions.

18.65 Forward and Backward
Passes

We are given (xi,yi) i = 1, . . . , N . Our objective is to
learn the weight matrices wi.

18.65.1 Forward Pass

For each sample in the training data we can give xi

as input and go through it through a series of matrix
multiplications and activations. Finally the network pre-
dicts xp+1. We compute the loss per sample using equa-
tion 18.39 or similar other loss equations. Finally the

total loss L is computed as the sum of loss over all the
samples.

Forward pass is straightforward. It involves many ma-
trix multiplications. This leaves scope for parallelization
and running on dedicated hardware at high speed.

18.65.2 Backward Pass

Example 1 Let us consider the situation, we want to
update the weight matrix of the last block as

wk+1
p Wk

p � ⌘
@L

@Wp

How do we compute @L
@Wp

?

Chain rule helps us to compute @L
@Wp

as

@L
@Wp

=
@L
@xp

· @xp

@Wp

The first term is available (see the text next to equa-
tion 18.39) and the next term is available with the defi-
nition of the block (see criteria B).

Example 2 Now let us try updating the weights in the
last but one block.

wk+1
p�1 Wk

p�1 � ⌘
@L

@Wp�1

Similar to the previous case, we can compute

@L
@Wp�1

=
@L
@xp

· @xp

@xp�1
· @xp�1

@Wp�1

We already know the availability of the first and last term
(from the previous example of updating Wp). We also
know that the middle term is available from our criteria-
A.

Example 3 Now we can compute

@L
@W1

=
@L
@xp

· @xp

@xp�1
· . . .

@x3

@x2
· @x2

@W1

The point to note in the backward computation is that
the partial derivatives required for the computation is
available already, if we have updated the weights back-
wards.

18.66 Backpropagation

The error backpropagation or backpropagation can be
summarized as:

1. Initialize the network with random weights.

2. For all the samples, compute the output of the neural
network xp+1

3. Compute the loss for the full batch of N samples as

L =
1

N

NX

i=1

L(xi
p+1,yi)

4. Adjust all the parameters (such as weight matrices)
as

✓k+1 ✓k ��✓

or

✓k+1 ✓k � ⌘
@L

@✓

5. Repeat steps 2-4 until convergence.

18.66.1 Refinements over backpropaga-
tion algorithm

Over years, backpropagation algorithm has been refined
significantly with many minor but critical innovations.
What all can change in the simple version we saw early?

1. step 1: Initialization can be smarter.

2. step 2: Computing loss over a full batch and updat-
ing it once is not the best.

3. step 3: Loss function can be di↵erent. There re
many other loss functions available beyond MSE.

4. step 4: Update rule can be di↵erent. What we saw
here is too simple.

18.67 Closer Look at the Deriva-
tives (*)

Now that we had seen the larger picture of backpropaga-
tion and the chain rule for computing the derivatives, let
us have a closer look at the equations 18.42 and 18.43.

tn = Wnxn ; xn = �(tn)

xn+1 : q ⇥ 1 ; xn : p⇥ 1 ; Wn : q ⇥ p ; tn : q ⇥ 1

@xn+1

@xn
=

@xn+1

@tn

@tn

@xn
(18.44)

@xn+1

@Wn
=

@xn+1

@tn

@tn

@Wn
(18.45)

It should be noted that in equation 18.45, even though
tn is of dimension q ⇥ 1 and Wn is dimension q ⇥ p, the
derivative @tn

@Wn
has a maximum of q ⇥ p non-zero values.

This is because, the ith element of tn depends only on the
ith row of Wn. As such, for the purpose of equation 18.45,
we assume that the derivative @tn

@Wn
is represented by a

q⇥ p matrix with the ith row containing the derivative of
the ith element of tn with respect to the ith row of Wn.
Also to be noted here is that the derivative @xn+1

@tn
would

be a q ⇥ q dimensional diagonal matrix, because the ith

element of xn+1 depends only on the ith element of tn.

18-3

Lec 19: More on Backpropagation 19-1

CSE 475: Statistical Methods in AI Monsoon 2018

Lec 19: More on Backpropagation
Lecturer: C. V. Jawahar Date: Oct. 22, 2018

We had seen the back-propagation algorithm as one
that iteratively minimizing the loss/error over the sam-
ples. We discussed the algorithm as two steps:

1. Forward Pass: Do a forward pass for all the sam-
ples and compute the loss over the training set.

2. Backward Pass: Do refine all the learnable param-
eters (weights) iteratively as:

✓k+1 ✓k � ⌘
@J

@✓

To make the discussions and notations simple, we as-
sume that all the learnable parameters are part of ✓, and
the loss/objective is J(✓). We use this notation through-
out.

19.68 Stochasticity

In practice we do not compute the loss over all the sam-
ples and then update the parameters in one go. We
do this over a randomly selected subset of the samples.
This leads to stochastic mini batch backpropagation al-
gorithm.

Note that the batch mode of the BP computes loss over
all the samples. This is actually an approximation of the
“true” gradient which we are not able to compute, since
we do not know the analytic function form. If the true
gradient can be approximated with sum of gradients over
a number of samples, thus approximation can be com-
puted from a subset of the samples also. However, com-
puting the gradient from a smaller set may have larger
error than that computed from all the samples. How-
ever, this is much more e�cient. Therefore, we can have
BP implemented as batch, single sample and mini-batch.
Minibatch is preferred.

The convergence and properties of stochastic gradient
descent methods have been analyzed in both convex min-
imization and stochastic approximation. In many related
areas, it has been shown that the stochastic gradient de-
scent will converge to the batch (not stochastic) estimates
in many practical situations.

19.68.1 Epochs and Iterations

In neural network literature, it is common to use the word
epoch. In the neural network terminology, one epoch con-
sists of one forward pass and one backward pass of all
the training examples. However, as we discussed above,
batch size (i.e., the number of training examples in one
forward/backward pass) could be much smaller than the
entire data. Though it is possible to randomly create
the batch size every time, it becomes computationally ef-
ficient to create random batches once (in the beginning
of the training) and use the same batches throughout.
When the batch size is large, the memory requirement of
the training could increase.

19.69 Sub-gradients

Another issue is the sub-gradient. many functions that
we use in the modern deep neural networks are not truely
di↵erentiable. Eg. ReLU. How do we handle these?

Eg1: ReLu A popular activation function is ReLU

�(x) =

⇢
x x > 0
0 x 0

Eg2: Hinge Loss Hinge loss has been a key component
in the success of SVMs.

max(0, 1� t · y)

Though in these two cases, the function is not continu-
ous, we can compute the derivatives at each point, except
the point of discontinuity. This is done with the help of
“subgradients”. In mathematics, the subgradient, gen-
eralizes the derivative to convex functions which are not
necessarily di↵erentiable.

19.70 Refinements

19.70.1 Initialization

. Initialization is very important for any iterative solu-
tion to the non-convex optimization. It is always feared

Lec 19: More on Backpropagation 19-2

that performance of the neural networks could be highly
dependent on this lucky initialization. (Is it really true?
Did you find so?)

Q: If we initialize all the weights as zero. What would
happen? If we initialize all the weights as non-zero, but
a constant value, what could happen?

It is observed that the random initializations are ideal
for the neural networks. In the earlier days, it was com-
mon to try multiple initializations and pick the best.
Even if we randomly initialize the weights, the output
of a neuron depends on the inputs. The variance of the
output directly depends on the inputs. Glorot and Bengio
(2010) proposed to randomly initialize the weights with a
variance that depends on the number of incoming (fan-in)
and outgoing (fan-out) connections. This method (pop-
ularly known as Xavier’s initilaization (AISTAT 2010)
works well in practice.

19.70.2 Better Update Rules

We know the update rule as:

✓k+1 ✓k ��✓

Gradient Update In the simple gradient descent (and
backpropagation) we saw, the change in weight �✓ is pro-
portional to the derivative of the loss/objective.

�✓ = ⌘
@L

@✓

Momentum Momentum based optimization provided
better convergence properties, and results. The idea is
simple. If we conistently change the weights/parameters
in certain direction, we can make larger steps instead of
small steps.

�✓ = ⌘
@L

@✓
+ ��✓t�1

If we change the directions frequently, then we make
small step. Connecting to the analogies from physics, we
make big steps, if the surface is smooth. If surface is
rough, we make small steps. Typically the momentum
is set to 0.9. This classical momentum term could carry
the ball beyond the minimum point. Ideally, we would
like “the ball” to slow down when the ball reaches the
minimum point and the slope starts increasing. This is
achieved by the Nesterov momentum.

Another aspect is that we have only one parameter
for the learning rate. Can we have di↵erent parame-
ters/scales for each dimension? Adaptive gradients and
its variations are aimed at this.

Other Recent Advances(*) A number of refinements
have surfaced in the recent years:

• Nistrong Moment [Nesterov 1983]

• AdaGrad [Duchi 2011]

• AdaDelta [Zeiler 2012]

• RMSProp [Tieleman and Hinton, 2012]

Though some of these refinements were recent, they have
all reached the end users through the popular libraries for
neural networks.

The ADAptive Moment Estimation (ADAM) [Kingma
and Ba, ICLR 2014] is a popular refinement of the update
rule similar to the momentum techniuques. The main
di↵erence between Adam and its two predecessors (RM-
Sprop and AdaDelta) is that the updates are estimated
by using both the first moment and the second moment
of the gradient. A running average of gradients (mean) is
maintained along with a running average of the squared
gradients.

19.70.3 Termination Criteria

Termination is often when there is no significant change
in the loss/objective. However, a larger number of iter-
ations can lead to overfitting. Often an “early stop” is
performed by looking at how the loss/objective change
over the validation data set. When the loss starts in-
creasing on the validation data, iterations are stopped.

19.71 Loss Functions

We know loss function as a measure of discrepancy be-
tween the ground truth (true value) and the predicted
output. The mean square error

NX

i=1

(ti � oi)
2

is a useful measure in this regard. This is popular for
many regression tasks, where ti and oi are reals. If there
are more than one neurons in the output layer (say M),
then one can compute it by summing up over all the M
neurons

NX

i=1

MX

j=1

(tji � oj
i)

2

This is not the apt measure for classification related tasks.
When the output has M neuons and output of these neu-
rons corresponds to the probabilities to these classes, then
it is typical to use softmax in the output layer.

ok =
eok

PM
j=1 eoj

Lec 19: More on Backpropagation 19-3

Published as a conference paper at ICLR 2015

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2

t indicates the elementwise
square gt � gt. Good default settings for the tested machine learning problems are ↵ = 0.001,
�1 = 0.9, �2 = 0.999 and ✏ = 10�8. All operations on vectors are element-wise. With �t

1 and �t
2

we denote �1 and �2 to the power t.
Require: ↵: Stepsize
Require: �1, �2 2 [0, 1): Exponential decay rates for the moment estimates
Require: f(✓): Stochastic objective function with parameters ✓
Require: ✓0: Initial parameter vector

m0 0 (Initialize 1st moment vector)
v0 0 (Initialize 2nd moment vector)
t 0 (Initialize timestep)
while ✓t not converged do

t t + 1
gt r✓ft(✓t�1) (Get gradients w.r.t. stochastic objective at timestep t)
mt �1 · mt�1 + (1� �1) · gt (Update biased first moment estimate)
vt �2 · vt�1 + (1� �2) · g2

t (Update biased second raw moment estimate)
�mt mt/(1� �t

1) (Compute bias-corrected first moment estimate)
�vt vt/(1� �t

2) (Compute bias-corrected second raw moment estimate)
✓t ✓t�1 � ↵ · �mt/(

p
�vt + ✏) (Update parameters)

end while
return ✓t (Resulting parameters)

In section 2 we describe the algorithm and the properties of its update rule. Section 3 explains
our initialization bias correction technique, and section 4 provides a theoretical analysis of Adam’s
convergence in online convex programming. Empirically, our method consistently outperforms other
methods for a variety of models and datasets, as shown in section 6. Overall, we show that Adam is
a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2 ALGORITHM

See algorithm 1 for pseudo-code of our proposed algorithm Adam. Let f(✓) be a noisy objec-
tive function: a stochastic scalar function that is differentiable w.r.t. parameters ✓. We are in-
terested in minimizing the expected value of this function, E[f(✓)] w.r.t. its parameters ✓. With
f1(✓), ..., , fT (✓) we denote the realisations of the stochastic function at subsequent timesteps
1, ..., T . The stochasticity might come from the evaluation at random subsamples (minibatches)
of datapoints, or arise from inherent function noise. With gt = r✓ft(✓) we denote the gradient, i.e.
the vector of partial derivatives of ft, w.r.t ✓ evaluated at timestep t.

The algorithm updates exponential moving averages of the gradient (mt) and the squared gradient
(vt) where the hyper-parameters �1, �2 2 [0, 1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the 1st moment (the mean) and the
2nd raw moment (the uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero, especially
during the initial timesteps, and especially when the decay rates are small (i.e. the �s are close to 1).
The good news is that this initialization bias can be easily counteracted, resulting in bias-corrected
estimates �mt and �vt. See section 3 for more details.

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by changing
the order of computation, e.g. by replacing the last three lines in the loop with the following lines:
↵t = ↵ ·

�
1� �t

2/(1� �t
1) and ✓t ✓t�1 � ↵t · mt/(

p
vt + ✏̂).

2.1 ADAM’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes. Assuming ✏ = 0, the
effective step taken in parameter space at timestep t is �t = ↵ · �mt/

p
�vt. The effective stepsize has

two upper bounds: |�t| ↵ · (1 � �1)/
p

1� �2 in the case (1 � �1) >
p

1� �2, and |�t| ↵

2

Figure 19.5: Adam: Algorithm. taken from Kingma and Ba, ICLR 2014

. The softmax output ok could be considered as the prob-
ability to be in class k. pk.

The popular loss in this case is cross entropy loss

=
MX

j=1

yj log pj

for a M class classification problem. To appreciate this
loss better, let us look at how can we compute the
distance/dissimilarity between two probabilistic distri-
butions. The classical measure for this is called Bhat-
tacharya distance (or some people also call it as KL-
divergemce)

DKL(p(x)||q(x)) =
X

x

p(x) ln
p(x)

q(x)

A symmetric version (DKL(p(x)||q(x)) +
DKL(q(x)||p(x))) is also preferred in many cases.
See Wikipedia on KL divergnce to appreciate the
relationship between cross entropy and KL divergence.

19.71.1 Regularization

It is common to regularize the neural networks in di↵er-
ent ways to prevent overfitting. One classical method is
to look for simple/small neural network that can solve
the problem of interest. The simplicity of such a neural
network is measured with the number of non-zero weights
(L0 norm of the weights) or sum of absolute value of the
weights (L1 norm of the weights). Both L0 and L1 norms
are hard to work with in most cases. In practice L2 norm
is a good choice and the new loss then becomes old loss
plus the L2 norm of the weights in the neural networks.

J 0 = J + ||✓||22

Please note that the new term is an addition. (remember
u+v) and the new update rule will be almost the same as
the old update rule plus an additional term corresponding
to the L2 norm of the weights.

One can attempt to minimize L0 norm by pruning (re-
moving or explicitly making it as zero) some of the tiny
weights. Usually removal of some of the tiny weights need
not change the network performance (output values) sig-
nificantly. One of two iterations of the backpropagation

Lec 19: More on Backpropagation 19-4

algorithm can recover any loss in performance due to this.
However, having zero elements in the weight matrices will
not save memory or computation if your inherent data
structure is matrix/tensor. One needs to use appropriate
sparse matrix computing techniques in this case.

19.72 Second Order Methods

The popular backpropagation algorithm that we studied
till now uses only the first order derivatives. It takes lin-
ear steps along the negative gradient. Assume we have
knowledge about the curvature/shape of the curve, then
we could obtain better estimate of the solution in every
step. Second order method uses Hessian (matrix of sec-
ond order derivatives) in every step. (Recollect our dis-
cussions related to second order gradient descent methods
elsewhere.)

H =

2

64

@2J
✓2
1

@2J
✓1✓2

. . . @2J
✓1✓N

.
@2J
✓N✓1

@2J
✓N✓2

. . . @2J
✓2
N

3

75

Remembering the truncated Taylor series expansion,

J(✓) ⇡ J(✓0) + (✓ � ✓0)
TrJ(✓0) + (✓ � ✓0)

T H(✓ � ✓0)

We could take the derivative and equate to zero:

r✓J(✓) = r✓J(✓0) + H(✓ � ✓0) = 0

or

✓ = ✓0 �H�1r✓J(✓0)

If the function was quadratic, this step directly takes us
to the minimum. (Q: why?). If not, this takes us to the
minima of the quadratic approximation.

In general, we need to now compute g, compute H and
then update as ✓k+1 ✓k �H�1g Where g = r✓J(✓)

The above mentioned second order method (alias New-
tons method) requires, at every iteration, calculating and
then inverting the Hessian. If the network has N param-
eters, then inverting the Hessian is O(N3). This renders
Newtons method impractical for the modern deep neural
networks.

When the Hessian has negative eigenvalues, then steps
along the corresponding eigenvectors are gradient ascent
steps. To counteract this, it is possible to regularize the
Hessian, so that the updates become:

✓ ✓k � (H + ↵I)�1r✓J(✓0)

As ↵ becomes larger, this turns into first order gradient
descent with learning rate 1

↵ .

19.73 Discussions (*)

19.73.1 Vanishing and Exploding Gradi-
ents

We had seen the derivation of the gradients using chain
rule. If the gradients are small, then the product can
“vanish” very fast. Similarly if the gradients are larger,
then the products can explode very fast.

When cost function has “cli↵s”, where small changes
in ✓, drastically change the cost function. (This usually
happens if parameters are repeatedly multiplied together,
as in recurrent neural networks.) Similar to exploding
gradients, repeated multiplication of a matrices/vectors
can cause vanishing gradients.

These problems of vanishing and exploding problems
have bothered for long time in numerically training deep
neural networks.

19.73.2 More on Second Order Methods

To get around the problem of having to compute and in-
vert the Hessian, quasi-Newton methods are often used.
Amongst the most well-known is the BFGS (Broyden
Fletcher Goldfarb Shanno) update.Quasi-Newton meth-
ods usually require a full batch (or very large mini-
batches) since errors in estimating the inverse Hessian
can result in poor steps.

CG methods are also beyond the scope of this class, but
we bring it up here in case helpful to look into further.
Again, ECE 236C is recommended if youd like to learn
more about these techniques.

• CG methods find search directions that are conjugate
with respect to the Hessian, i.e., that gT

k Hgk1 = 0.

• It turns out that these derivatives can be calculated
iteratively through a recurrence relation.

• Implementations of Hessian-free CG methods have
been demonstrated to converge well (e.g., Martens
et al., ICML 2011).

19.73.3 Further Reading

This area has many advanced reading material. Inter-
ested students may read the original papers, tutorial
notes online. They are beyond the scope of this course.

