CSE 475: Statistical Methods in AI

Lec 1: Introduction

Lecturer: Anoop M. Namboodiri

Class Logistics

- Lectures and Tutorials
- Grading Policy
 - Mini Projects (20%)
 - Homeworks (30%)
 - Mid Terms (30%)
 - Final Exam (20%)
- Homeworks and Shiksha Portal
- Assignments / Mini Projects
- See moodle page for details/resources

Topics Covered

- 1. *Category or Class*: A collection of objects with similar properties, which can together be given a name.
- 2. Cognition and Recognition: Cognition is the process of formation of new concepts from a set of unlabelled examples. Often referred to as unsupervised learning. Recognition is the process of associating a new (unlabelled) sample to a class that we already know of.
- 3. Inter-Class and Intra Class Variability: Similarity between objects of different classes and Differences between objects of the same class. These make the problem difficult.
- 4. Features and Feature Vector: A set of informative measurements taken from an object, which forms the representation of the object. Often features that humans think of are not meaningful or are difficult to extract automatically.
- 5. *Recognition*: The process of mapping an input feature vector to a class label. Depending on applications, the input and output changes, but the process outline remains the same.

- 6. *Recognition Applications*: Think of the input and output (class labels) for each of the following problems.
 - Speech Recognition
 - Speaker Identification
 - Non-destructive Testing
 - Natural Resource Identification
 - Character Recognition (OCR)
 - Web Search
 - Fingerprint Identification
 - Identification and Counting of Cells
 - Disease detection/diagnosis from EEG/EKG
 - Aerial Reconnaissance
- 7. Recognition Pipeline: Works in two stages.
 - Training: Labelled Data → Feature Extraction → Learning Classifier → Model.
 - Testing: Unlabelled Data → Feature Extraction → Model → Class Label.
- 8. Approaches to Classification:
 - *Generative*: Model the distribution of features among samples of a class. Assign class labels to new samples based on the distribution function value for the feature vector.
 - *Discriminative*: Model the boundary between classes in the feature space. Assign class labels to new samples based on which side of the boundary, the sample falls in.
- 9. Complexity of the boundary:
 - Given two boundaries that separate training samples, do we choose a simple one or complex one? (Occam's razor)
 - Are complex boundaries that separate the training samples better than simple boundaries that make some errors?

Monsoon 2018