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3.1 Problem Space

Let us start with our basic problem. We are given a num-
ber of examples in the form {x

i

, y

i

)} for i = 1, . . . , N . For
the simplicity, we assume that x

i

is a real d-dimensional
vector. And y

i

is a scalar (say real number or an integer).
Our interest is in finding a function f() such thar f(x

i

)
is same (or very similar) as y

i

.
(At this moment, we will deal with the requirement

of the “very similar” to be as close as possible for all
the N training samples that we have. Later we should
also make sure that the same function will work for all
the samples that we come across in the future also (i.e.,
unseen samples).)

For example, x
i

could be an email that is represented
with a real vector. and y

i

could be 0 or 1 corresponding
to “spam” (1) or not (0). In this case it is a classifica-
tion problem. One may also formulate the problem as
classification of the email into “spam” (0), “personal” (1)
and “professional” (2). In this case, this is a multiclass
classification problem. You may also predict “how im-
portant/urgent” is an email by looking at the content.
In this case, then y

i

is a real number (say in the raneg
[0�1] where 0 means least urgent and 1 means extremely
urgent.

3.1.1 Classification

In classification problems y

i

is an integer. What value
we assign is of not much significance. For example, some
people use 0 and 1, while some where else we use �1 and
+1 as the class IDs. The choice is often based on some
conviniences (simpler form of equations!!). In both these
cases, it is a “binary” classification. In many cases we
also call these classes as !1 and !2.

Multi class classification where the number of classes is
more than 2 is a popular case. Though multiclass classi-
fication is very popular and important in practice, many
discussions in the linear classifiers assume that the num-
ber of classes is only 2. That makes the life simple.

3.1.2 Regression

In the case of regression, y
i

is real quantity. It could be
a real vector or a simple real number. Let us assume it
as a real number at this stage.

3.1.3 Others

There are many other situations where the space of y has
structure. For example, y is a graph or a string. Such
problems are beyond our interest at this stage.

3.2 Linear Models

Let us first start with a specific, (simple), and yet e↵ective
class of models/functions.

y = f(x) = w

T

x+ w0 (3.1)

If d = 2 then the model is something like

y = w2x2 + w1x1 + w0

The additional term w0 is required to make sure that
it covers all the possible “lines” including the ones that
does not pass through the origin.

This is not limited to 2D samples. Lines naturally gets
extended to planes and hyperplanes.

3.2.1 Augmented Vectors and Feature
Maps

The notation (and many math that come later) could be
simpler if we do not have w0. We do that by augment-
ing the vector x with an additional quantities. i.e., the
new x is the old x with an additional 1 concatenated at
the end. Similarly the w is augmented with w0 and the
equation 3.1 gets simplified as

y = f(x) = w

T

x (3.2)

Note that we did not introduce a di↵erent notation with
and without augmentation. This is to make the notations
simpler. (Text books may be using di↵erent notations).
Hope you appreciate the convinience of augmenting with
1.
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What more we can do with augmentation (or explicit
feature maps)? We can infact create a new vector from
the old ones. This also generelizes the trick of augmenta-
tion.

Consider that our original vector is [x1, x2]T . We now
know how to create a new vector [x1, x2, 1]. Why not
[x2

1, x
2
2, x1x2, x1, x2, 1] ? Such a modification will allow us

to learn a new model wT

x as

w5x
2
1 + w4x

2
2 + w3x1x2 + w2x1 + w1x2 + w0 (3.3)

which is really a quadratic function. Our linear algorithm
(that we see soon ) is able to learn nonlinear models too.
The objective of introducing this at this stage is to con-
vince that the algorithms that we will discuss are very
powerful and useful. Linearity does not constrain us too
much.

3.3 How do we formulate ?

Now let us come back to our problem. We are given
examples {(x

i

, y

i

)} i = 1, . . . , N . What do we want to
do? We want to find the most appropriate w.

Indeed we may not find a single w that can make
y

i

= w

T

x for all i. This could be due to various reasons
including errors, noise or uncertainty in the data. There-
fore we want to model the problem as find the “most
appropriate” w. This naturally lead to an optimization
problem. Most appropriate in what sense? We need to
define an appropriate sense or objective that can be com-
puted. This is the objective function. In machine learn-
ing, we also use the term loss function or error function
frequently. All these are used with very similar meanings.

Our problem is then to find w that minimizes

Total�Loss =
NX

i=1

Loss�Per�Sample =
NX

i=1

L(w, x

i

, y

i

)

Why do we have to sum over i? Why not products?
That is also possible. We do summation so that di↵eren-
tiation is easier later. (do you remember how to di↵eren-
tial u + v and uv?). There may be many di↵erent ways
in which you can define loss functions.

Q: Do you see any other advantage or disadvatage of
products over sum? Which will be more sensitive to out-
liers? (samples which may have very larger error).

3.3.1 Loss Function

Consider the regression problem in 1D. You have (x
i

, y

i

).
By augmenting 1, x

i

becomes a 2 dimensional vector x
i

.
Our problem is to find the vector w = [w1, w0]T such that
the model is y = w1x1+w0. Look at this as a line fitting.

Error or loss in this case is the di↵erence between the
model prediction and actual.

L(w,x

i

, y

i

) == (y
i

�w

T

x

i

)2

We square the error such that no loss is negative. This
is required since we will now be adding the loss from
di↵erent examples to get the total loss.

And the total loss or objective is then sum over all the
examples

J(w) =
1

N

NX

i=1

(y
i

�w

T

x

i

)2 (3.4)

Note that we have only one w for all the samples.
Similarly for a classification problem, loss can be 1 if

the classification is wrong and 0 if the classification is
correct.

Let us assume that the classifier is

f(x) =

⇢
1 if wT

x > 0
�1 else

(3.5)

J =
1

N

NX

i=1

(1� y

i

· f(x
i

)) (3.6)

• Q: If we had used a 0� 1 convention for the classes,
how the equation could have been written?

• Q: The problem with this loss is that this is not dif-
ferentiable. Why?

3.3.2 Optimization

The optimization problem we need to solve is

minimze J(w) (3.7)

Though we know what problem to solve, very often
we can not find the “best w” in practice. There are two
prominent classes of optimization problems:

• Convex optimization. A well behaved class of prob-
lem. You can find the optima. And often e�ciently.

• Non-Convex optimization problem. This is a class of
nasty optimization problems. Unfortunately, we will
encounter them very frequently. In this case, very
often, we have to be happy with “a” minima/solution
and not the best solution.

More details of these classes of problems is beyond the
scope of this course.
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3.4 Regression, Line Fitting and
MSE Solution

Let us now see how do we find the best w for our line
fitting problem in 1D. i.e., (x

i

, y

i

). As dsicussed above,
by augmenting, we got the problem as (x

i

, y

i

). We want
a model f(x) = w

T

x. Or we want to minimize the er-
ror e

i

= y

i

� w

T

x. Let us write the equations as vec-
tors/matrices.

2

6664

e1

e2
...
e

N

3

7775
=

2

6664

y1

y2
...
y

N

3

7775
�

2

6664

x

1

T

x

2

T

...
x

N

T

3

7775
w (3.8)

The right hand side is more compactly Y �Xw

The total loss (sum of squared error) or mean sum of
sequred error (equation 3.4) is.

J(w) =
1

N

[Y �Xw]T [Y �Xw]

where Y is a N ⇥ 1 vector. X is a N ⇥ d matrix and w

is a d⇥ 1 vector.

J(w) =
1

N

(YT

Y +w

T

X

T

Xw � 2wT (XT

Y))

3.4.1 Problem and the closed form solu-
tion

Our problem is to find the “best” w. Note that the only
variable in the loss function is w. We can di↵erentiate
the loss function with respect to w and equate to zero to
get the minima. This leads to

2XT

Xw � 2XT

Y = 0

or
w = (XT

X)�1
X

T

Y

Since we started by finding a w that suits Y = Xw.
We can also look (XT

X)�1
X

T as the pseudo inverse of
X.

• Q:Why do we have to have a pseudo inverse? Why
not a regular inverse?

• Q:Under what situations the inverse in the above
equation can not be computed? When can this hap-
pen for the above MSE problem.

• Q;If all the samples were on the line itself. i.e., all
the errors e

i

s were zero. What do we know about
the matrix (XT

X)?

• Q: If N = 1, is the problem (easily) solvable? what
could happen to ths solution?

3.4.2 Discussions

The above formulation is very e↵ective. However, here
are some points woth noting.

• This assume all the samples are available before we
start. (not when samples come over time in an online
manner).

• The inverse of a d⇥ d matrix is not very attractive.
Specially when d is large.

• As a line fitting in 2D, this is not very intuitive, some
time we want the orthogonal distance to the line to
be minimized.


