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4.5 A Related Problem

In the last lecture we looked at the line fitting when we
were predicting y

i

from x

i

. We minimized an error in y

i

.
If you draw then in a 2D plane (when x was 1d) the error
is parallel to the y axis. In general, the error is always
defined with respect to y.

A very related problem is how do we fit a line that
minimizes the orthogonal distance from the samples to
the line? i.e.,

min
w

d?(xi

,w)

Note that x
i

is a point and w is a line.
Another problem that we are interested in is to find

a “representative” for the set of samples that we have.
Who should represent the set x

1

,x

2

, . . . ,x

N

?.
How do we define the problem? The problem is to find

an entity (such as a point, line, plane etc.) that can repre-
sent the set, with minimal loss in “information/content”.

4.6 Point that minimizes the dis-
tance

Let z be a point that minimizes the sum of distance to
all the given N points. How do we find z?.

min
z

NX

i=1

[z� x

i

]T [z� x

i

]

Expanding

min
z

NX

i=1

z

T

z+ x

T

i

x

i

� 2z

T

x

i

Di↵erentiating with respect to z and equating to zero:

2z =
NX

1

2x
i

or z is nothing but our familiar mean µ = 1
N

P
N

i=1 xi

.
This is quite intuitive. Here we only argued that mean

minimizes the sum of distances. Also mean is a good
representative of the samples. If we want to represent
a set of samples with a single (constant) representation,
then it has to be mean!!.

If we want to represent all the samples with a single
dimension (not a constant), what it should be? Note
that this is also equivalent to finding a new feature that
can be used to “approximate” all the d features we have.

We want to look at this new feature as projections on to
a line w. as z

i

= w

T

x

i

. Geometrically, if the structure of
the data needs to be preserved (or loss of “information” is
small), then we want to minimize the orthogonal distance
to the line.

4.7 Minimizing Orthogonal Dis-
tance

We are interested in finding (i) a fixed point and (ii) a
direction that can define our line. Let w define the direc-
tion. We know the fixed point as mean.

Let us first assume that mean is subtracted from all
the samples. Now x

i

T

x

i

is nothing but the square of the
distance from the origin, and w

T

x

i

is nothing but the
projection of the x

i

on w.
Simple geometry (figure missing) tells us that the or-

thogonal distance we want to minimze is nothing but

x

i

T

x

i

� (wT

x

i

)2

(ref: good old Pythagoras theorem)
Our problem now is

min
w

NX

i=1

x

i

T

x

i

� (wT

x

i

)2

First term is independent of z so we could convert this
into a maximization problem as:

max
w

NX

i=1

(wT

x

i

)2

or more compactly

max
w

w

T (XT

X)w

Please refer to the notations that we used for the MSE in
the last lecture.

There is an issue here. Unconstrained optimization of
this can lead to w increasing (to infinity). How do we
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prevent? We need to add a constraint like w

T

w = 1.
This means that w is only a direction and what we want
is a unit norm vector that maximizes our objective.

The popular method for introducing the constraint into
the optimization problem is with lagrangians. (read more
somewhere else.) Popular notation is �. This modifies the
problem as

max
w

w

T (XT

X)w � �(wT

w � 1)

Now we use our simple trick of di↵erentiating with re-
spect to w and equating to zero.

(XT

X)w = �w

Or w is the eigen vector of the C = X

T

X. Since the
mean was substracted from all the samples, it is easy to
see that C is the covariance matrix.

Therefore the line that minimizes the orthogonal dis-
tance passes through the origin and has a direction of the
first eigen vector of the covariance matrix.

4.7.1 Why first?

Why did we pick the first eigen vector? Note that C has
many more eigen vectors. (Q: How many?) What is spe-
cial for the first (largest) or principal one? (in general, it
is assumed that eigen values are sorted in non-increasing
order.)

We know that (XT

X)w = �w and what we want to
maximize is w

T (XT

X)w. Substituting, we realize that
what we want to maximize is �wT

w. If w is a unit vec-
tor, it is clear that what we want is the eigen vector cor-
responding to the largest eigen value.

Q: Can the eigen value be negative or imaginary for C?
What are the properties of C?

Q: Is C is Positive Semi Definite (PSD) matrix? See
the definitions and start.

Note: You may also see the notation of ⌃ for the co-
variance matrix.

4.8 Discussions

We now know how to optimize MSE (mean squared er-
ror). We also know how to minimize the orthogonal dis-
tance and fit a line/plane. In both cases, we formed an
appropriate objective function. We minized the objec-
tive and found an expression to compute to the optimal
solutions in one step.

• This is not always possible. Not all problems are this
simple.

• We may not have all the data when we start. We
continue to get data online in a streaming manner.

• we do not want to work with “huge” matrices in the
casses of large data sets.

This points to the need of incremental techniques to
address this class of problem.

4.9 Introduction to Gradient De-
scent

The most popular technique at this stage is gradient de-
scent. i.e.,

• start with a random initialization of the solution.

• incrementally change the solution by moving in the
negative gradient of the objective function.

• repeat the previous step until some convergence cri-
teria is met.

Or the key equation for change in weight is:

w

k+1  w

k � ⌘rJ (4.9)

Note that w is a vector. rJ is a also a vector. Often
w

0 is a random vector. For some of the proofs later, we
may use w

0 to be zero vector 0.

4.9.1 An Intuitive Explanation

Let us look at a simple quadratic error/loss function.
(Plot J vs w). Let us assume that w is a scalar for sim-
plicity.

Let us assume that we start with an arbitrary w

0. How
do we want to change w? increase or decrease? (there
are only two options for 1D case!!). This is same as neg-
ative gradient of the objective. But how much we should
increase or decrease? This is the learning rate ⌘. usually
a small quantity adhocly set.

With small learning rate, the iterative algorithm takes
more time to converge. With large learning rate there
is a chance that the algorithm may get diverged or even
oscillating.

4.10 Revisiting MSE

Let us now revisit the MSE we did in the last lecture.
Our problem is to

min
w

J = min
w

1

N

NX

i=1

(y
i

�w

T

x

i

)2

The objective

rJ =
2

N

NX

i=1

(y
i

�w

T

x

i

)(�x
i

)



Q: Write psedocode for gradient descent based MSE;
Implement and verify that the solutions of the closed form
(last lecture) and this are the same.

This is a well behaved problem (a convex optimization).
The solution is simple, and also we reach the same final
vector independent of the initialization.

What should be the termination criteria? You can ter-
minate when the changes in the solution is very small (say
< ✏).

4.10.1 Practical Issues and Concerns

Gradient descent is a powerful (if not the most powerful
at this moment) optimization tool that we will use in
many situations in the past.

There are many concerns. How do we initialize? What
learning rate we should choose? How do we terminate?

These concerns become more serious when the opti-
mization problem is non-convex. They may not be serious
at this stage.
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