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8.15 GD for Classification

We know the gradient descent equation as

wn+1  wn � ⌘rJ (8.11)

We start with an initialization w0 and update the
weights/vector until we get the separating hyperplane (or
until it converges).

Let us specially focus on the classification problem to-
day. We wish to use a loss that measures classification
accuracy. That is, the percentage of samples misclassi-
fied.

Let us now consider the objective as
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This provides
a “unit” loss for all the misclassifications and “zero” loss
for all the correct classifications. (see notes elsewhere for
details.) Our ideal goal could have been to minimze this
loss.

However we have a serious problem. This is not di↵er-
entiable. So what do we do? We can address this in two
di↵erent ways. This leads to two popular algorithms:

• Perceptron Algorithm

• Logistic Regression

8.16 Perceptron Algorithm

Perceptron algorithm makes the assumption that all the
samples are linearly separable. In other words 9w such
that y

i

f(x
i

) = +1 8i.
Let us now look for an alternate loss function. We

modify the loss as quantity as
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(8.13)

where E is the set of misclassified samples.

How is this di↵erent? The summation is only over the
misclassified samples. This does not change anything re-
ally. (We had zero loss for all the correctly classified
ones anyway). We then have a ”non-unity” loss for all
the misclassified ones. (This is di↵erent from the previ-
ous loss). It is proportional to how far it is from the
line/plane/hyperplane. The farther the sample is the
more the loss is. (indeed, not very ideal!!). Q: Why is
not ideal?

Pleasantly, this is now di↵erentiable. That is an advan-
tage. Also when all samples are correctly classified ( when
the problem is linearly separable), the loss becomes zero
(E becomes empty set.) and our algorithm will converge
(loss is zero, derivative is also zero.)

There is also an advantage with this loss. A sample
that is far from the line/plane will pull/push/rotate the
line/plane more than one that is very near the line. This
will help in faster convergence.

This leads to the gradient descent equation as:
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Another way we could define the weight update is with
the help of desired/target (t) and output (o). Note that
when desired and predicted outputs are same, t � o is
zero. Else it is either Positive or negative (when y

i

as
well as t � o will have the same sign when the sample is
misclassified.)
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Note that ⌘ is a learning rate and it could absorb any
scaling. (⌘ in all these equations need not be identical,
see yourself, if they di↵er by a scale factor.). Here the
summation is over all the samples. Note that, this does
not change the update rule. The additional terms are
zero.

Algorithm now has the following steps:

1. Initialize w, k=0

2. We update the w as

wk+1  wk + ⌘

NX

i=1

(t
i

� o

i

)x
i



Lec 8: Linear Methods-IV 8-2

or
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3. k  k + 1

4. Repeat steps 2-4

• until E is empty. (the ideal termination criteria
for perceptron algorithm) Or

• until the change in weight is small (say less than
✓).

8.17 Discussions and Examples

Let us consider some simple situations first and see how
the perceptron algorithm behaves.

Let us simplify the update rule first. Assume ⌘ = 1.
Let us assume that there is only one sample. Also let us
assume that x has only one dimension i.e., scalar. This
simplifies to:
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Now let us consider some situations.

• When there is no misclassification. i.e., t
i

= o

i

. In
this case, w does not change.

• Let us consider t

i

= +1, o
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= �1 and x
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is posi-
tive. Sample is misclassified. Which means wk ·x

i

is
negative. (x

i

is fixed and positive.) This means w

k

is negative. We need to increase w

k to (positive to
) minimize/avoid misclassification. If we substitute
the values/signs in the above equation, we see that
perceptron algorithm does this exactly.

• Now Let us consider t
i

= +1, o
i

= �1 and x

i

is neg-
ative. Sample is misclassified. Which means wk ·x

i

is
negative. (x

i

is fixed and negative.) Therefore, wk is
positive. We need to decrease w

k to minimize/avoid
misclassification. If we substitute the values/signs
in the above equations, we see that perceptron algo-
rithm does this exactly.

• Q: Convince yourself for all other cases also.

8.17.1 Example/Problem in 2D

Q: Consider a set of vectors in 2D.

{[1, 1]T , [1, 3]T , [2, 1]T , [2, 2]T ,

[�1,�1]T , [�1,�3]T , [�2,�1]T , [�2,�2]T

The first four are from class 1 and the rest four are
from class 2.

• Plot the samples in a 2D plane with “⇥” for positive
classes and “�” for negative class. Is this set linearly
separable?

• Start with a random vector for w and show that
the perceptron algorithm converges to a separating
line/plane for di↵erent values of ⌘. (make sure that
you start with a vector that has error!!).

• Why is that the final answers are di↵erent for di↵er-
ent initializations/⌘? Then which is the best solu-
tion?

8.18 Some Theoretical Results

Perceotron algorithm has a number of interesting theo-
retical properties/results. A summary is below.

• If there exist a set of weights that are consistent with
the data, the perceptron algorithm will converge.

• If the training data is not Linearly Separable, the
perceptron algorithm will eventually repeat the same
set of weights and thereby enter an infinite loop.

• If the training data is linearly separable, algorithm
will converge in a maximum of M steps. (Q:Find M).

• Every boolean function can be represented by some
network of perceptrons only two levels deep.

8.19 Neural Networks View Point

A popular view point of the perceptron is to appreciate
it as a “neuron”. Though the story has origins in our
attempts to understand and reverse engineer human brain
and perception skills, it is much easy to appreciate it as
a powerful mathematical model at this stage.

A neuron accepts multiple inputs. Weigh each one.
Add the inputs. Pass through a nonlinearity. In the case
of perceptron, the nonlinearity is a step like nonlinearity.
See also figure.

We will revisit the neural network view point at a later
stage when we discuss “multi layer perceptrons”.

8.20 Variations in Gradient De-
scent

We now know: (i) How to define a loss function (ii) how
to optimize it with gradient descent update equations.

There are in fact many variations in the implementa-
tion.



Figure 8.1: A pictorial representation of the neuron. Of-
ten a single large circle is shown for a neuron wherein the
weighted addition and nonlinearity is combined.

• Single sample or online version: which assumes that
samples come one by one. This computes gradient
per sample and update for each sample. A sample
may be seen multiple times (in a cyclic manner).

• Batch version: Compute the gradient for the batch
(full set) and update once.

• Mini-Batch: Instead of taking the full batch, take a
smaller batch. This is useful when the data is large.

• Stochastic: Samples in online or mini-batch are se-
lected randomly.

Q: Do write the pseudo code for each of these. Make
sure your pseudo code is very close to the programming
language that you use.
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