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10.25 Logistic Regression

In the last lecture, we started with logistic regression
(LR). LR is in fact a classification scheme. (Q: Then
why is it called regression?) LR introduces an extra non-
linearity g() (called a logistic function or sigmoid) over
our familiar f(x) = wTx. i.e.,

p(y = 1|x) = g(wTx) =
1
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One can consider this as the posterior probability also.
(Q: Do they sum up to 1?)

Classification rule corresponding to this is:

=

⇢
+1 when g(wTx) > 0.5 or wTx > 0
�1 when g(wTx)  0.5 or wTx  0

Note that the decision boundary is stillwTx = 0. How-
ever, the loss is based on a nonlinear (sigmoid) function.

10.26 MLE based Loss Function

Let us use a cost function from Maximum Likelihood Es-
timate (MLE) in this case.

Likelihood of the data is given by:

l(w) =
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Looking for w that maximizes the likelihood

w
MLE

= argmax
w
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(If you are not familiar with the notation,
Q

is product,
just like

P
is sum.)

The popular trick in formulations like this is to do two
transformations of the objective function:

• optimize log of the function instead of the function
directly. This converts the multiplication to addi-
tion. (note: log(ab) = log(a) + log(b))

• Take negative. It converts the maximization problem
to a minimization problem.

10.27 Loss Fn with y
i

2 {0, 1}
Let us look at the loss function with the conven-
tion/notation of y

i

2 {0, 1}.

p(y = 1|x) = g(wTx)

p(y = 0|x) = 1� g(wTx)

or in a compact manner by combining these two

p(y|x) = g(wTx)y(1� g(wTx))1�y (10.19)

Assuming independence in the data/samples, likelihood
is
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Taking log, taking negative, we get the objective for the
minimization problem as
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10.28 Loss Fn with y
i

2 {�1,+1}
We can also rewrite the objective with the y 2 {�1,+1}
convention.

p(y = +1|x) = g(wTx) =
1
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p(y = �1|x) = 1� g(wTx) =
1
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We can combine both into single expression as
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Assuming independence, the likelihood is
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Then the negative log likelihood is
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• when the sample is classified correctly, �y

i

wTx
i

is
negative and log(1 + e

�yiw
T
xi) is nearly zero.

• when the sample is wrongly classified, �y

i

wTx
i

is
positive and log(1 + e

�yiw
T
xi) is large.

Q: provide an intuitive explanation why the loss func-
tion with {0, 1} is also equally good. One can plot the
individual loss functions and see that, if y = 1, cost is
zero if the prediction is correct. if prediction is close to
zero, the cost increases to 1. Similarly one can see for
y = 1. Larger mistakes get larger penalties.

10.29 Regularization

It is common to regularize the loss function with an ad-
ditional term.

J
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(w) = J(w) + �
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The regularized objective function J

R

has an extra
term, compared to the original one.

Adding an extra term has many advantages:

• This can avoid overfitting, which is a major concern
for us.

• With regularization, we prefer certain type of solu-
tions over other. For example, we encourage, simpler
solutions over complex solutions for better “general-
ization”.

• It is common to add an extra term which is the norm
of w. If we choose a norm that measures the number
of non-zero elements, then while finding the “best”
w, we also find one which is sparse. (Q: which norm
measures the number of non-zero? Q: How do we
minimize such a loss? Read about LASSO and Ridge
regression.

• In the GD framework that we use, it is common
to add the L2 norm which leads to an additional
quadratic term in the objective and then a linear
term in the update rule. Since this is an “addition”,
it does not complicate the derivation/update.

10.29.1 Gradient Descent Solution

Q: Derive GD update rule and write pseudo code for LR
and Regularized LR for (i) single sample , (ii) batch and
(iii) mini batch SGD variations. (3⇥ 2 = 6 algorithms.)

Comparison of SVM and LR cost functions

SVM

min
w∈Rd

C
NX

i

max (0,1− yif(xi)) + ||w||2

Logistic regression:

min
w∈Rd
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log
³
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´
+ λ||w||2

Note:

• both approximate 0-1 loss

• very similar asymptotic behaviour

• main difference is smoothness, and 
non-zero values outside margin

• SVM gives sparse solution for αi

yif(xi)

AdaBoost

Figure 10.2: Comparison of di↵erent losses

10.30 Discussions

Logistic regression is a popular classification scheme. Let
us understand the loss in comparison with other methods.

You will see another popular scheme later Support Vec-
tor Machine (SVMs). This also optimizes a very similar
objective function. Let us write the objective function
corresponding to both these schemes in a very similar
manner.

SVM:

min
w
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Logistic Regression

min
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Both objective functions balance the relative impor-
tances with an additional term C VS �. Parameters like
this balance the relative importance of terms in an ob-
jective function. You may want to guess them right. But
not very di�cult in most cases.

Let us plot and see how di↵erent loss functions look
like in the figure 10.2. You can see that both SVM and
LR have very similar loss functions. One more smooth
than the other.

10.31 Multiclass Extension

We know that:
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p(y = 0|x;w) = 1� p(y = 1|x;w)
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Numerator is the weight/confidence of the sample be-
ing that class and denominator is the sum of weights for
all classes. This allows us to extend to the multiclass
setting as

p(y = c|x;w
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Note that the sum of probabilities across all classes sum
upto one. Finally a sample is classified into

argmax
i

p(y = i|x)

This is also called popularly as softmax. Very popular
in the modern deep learning architectures.

10.32 Other Multiclass Exten-
sions

We had seen binary classification schemes. You will see
more of them. How do we extend them to a multiclass
setting in general?

Let us consider we have K classes.

• We can build K one Vs rest classifiers.

• We can build
K

C2 pairwise classifiers.

How do we arrive at a final classification decision?
If the K one vs rest classifiers can provide probabilities,

life is simple as we had seen in the case of softmax. Pick
the class with highest probability.

If probabilities are not available (and only class label is
predicted), then we may have two cases to worry. All clas-
sifiers says ”rest”. or multiple classifiers assign a class-
label. In either case, the final decision is di�cult without
some additional information.

When there are
K

C2 classes, one can use simple ma-
jority voting to find the best classifier. One can also use
DAG (directed acyclic graph) like structure.
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