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5.11 Gradient Descent Procedure

We are interested in finding the optimal w or w⇤ corre-
sponding to the minima of J(w). We know the gradient
descent optimization procedure for this as:

1. Start with an arbitrary w, k = 0

2. Improve w as

wk+1  wk � ⌘rJ

3. k  k + 1

4. Repeat steps 2-3 until some convergence criteria is
met.

Convergence criteria can be (i) the change in weight w
or something similar. It is quite intuitive to see that the
solution is improving in each iteration.

5.11.1 Concerns

There are many concerns to us at this stage to appreciate
this algorithm fully:

• Intuitively, it works, and we appreciate in 1D. What
about in a general situations? How do we argue?
How did we come up with this update rule?

• There seems to be an adhoc ⌘, learning rate, in the
equation. How do we fix this? Indeed, we can find
a good ⌘ in every iteration. Therefore, it may be
worth to write ⌘ as ⌘k, truely.

• What about non-convex functions? That is also a
major concern. Surprisingly, this is one of the most
favorite methods for optimizing non-convex func-
tions.

• Is this the best update procedure? Can we have bet-
ter update rules than this?

There are many such very relevant concerns. Let us see
if we can find answers to some of these in this lecture.

5.11.2 A trivial case

Consider a function that is linear. (draw f() as a line and
x and y are two points on the x axis. Assume we know
f(x). How do we compute f(y)?

f(y) = f(x) + (y � x)f 0(x)

Simple.!!?
What does it say? If we know xm f(x) and f

0(x), then
we can compute the function at a new point y. If we want
to know where f(y) = 0, we can solve f(x)+(y�x)f 0(x) =
0 and find the y of our interest.

Our problem is not this simple, because the functions
of our interest are more complex.

5.12 Taylor Series

We know from the past about a function getting ex-
pressed in terms of neighbors. Taylor series is a rep-
resentation of a function as the sum of terms involving
function’s derivatives at a single point. It is an infinite
series, as long as derivatives do not vanish. You might
have studied it in di↵erent forms. Hope one of the fol-
lowing equations reminds you the details from your past
maths lectures.

f(x+ h) = f(x) + hf

0(x) +
h

2

2
f

00(x) + . . .

f(y) = f(x) + (y � x)f 0(x) +
(y � x)2

2
f

00(x) + . . .

f(y) = f(x)+[y�x] ·rf(x)+ 1

2
[y�x]TH(x)[y�x]+ . . .

f(wk+1) = f(wk) + [wk+1 �wk] ·rf(wk)

+
1

2
[wk+1 �wk]TH[wk+1 �wk] + . . .

By now, you should realize why Taylor series come at
this stage!!

We may also assume our update is more generic and as

wk+1  wk + s (5.10)

f(wk+1) = f(wk) + sTrf +
1

2
sTHs+ . . .

Note that we r and Hessians are evaluated at wk, It
is not written here explicitly in some of these equations,
to minimize the clutter.

We are now in a position to have a closer look at the
GD in the next section. Here our objective function J

needs to be expanded and optimized
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5.13 Closer Look at GD

Let us first reproduce the two equations that we may
need:

J(wk+1) = J(wk) + [wk+1 �wk] ·rJ(wk)

+
1

2
[wk+1 �wk]TH[wk+1 �wk] + . . .

J(wk+1) = J(wk) + sTrJ +
1

2
sTHs+ . . .

Let us try to answer three relevant questions:

1. What happens when our familiar gradient descent
update rule is used in a general situation?

2. What is the optimal learning rate?

3. Is this the best update rule that we can have?

5.13.1 GD Improves in each step

Let us remember our update rule as

wk+1 = w

k � ⌘rJ(wk)

or the change in weight (or weight uodate)

wk+1 �wk = s = �⌘rJ(wk)

Also let us look at the first order approximation of the
laylor series as:

J(wk+1) = J(wk) + sTrJ(wk)

Substituting for s

J(wk+1) = J(wk)� ⌘rJ(wk)TrJ(wk)

or

J(wk+1) = J(wk)� ⌘((a non negative quantity)

Therefore, when ⌘ is positive, we can argue that the
objective is improving in every iteration. When the gra-
dient is zero, no change in the objective and the iterations
stops.

One can extend this argument to say that as long as the
function is bounded below, we will be able to get to the
minima. Depending on ⌘, we may take more iterations.
This naturally lead to the question of optimal learning
rate.

5.13.2 Optimal learning rate

What is the best learning rate ⌘? Let us reproduce the
relevant equations and look at this problem:

J(wk+1) = J(wk) + sTrJ +
1

2
sTHs

wk+1 �wk = s = �⌘rJ(wk)

Substituting

J(wk+1) = J(wk)� ⌘rJTrJ+
⌘

2

2
rJTHrJ

We want to optimize for ⌘, Let us optimize for ⌘ by
di↵erentiating with respect to ⌘ and equating to zero.

This leads to

�||rJ||2 + ⌘rJTHrJ = 0

or

⌘ =
||rJ||2

rJTHrJ
Note that this needs change at every iteration k since

J and H are also function of wk.
This assumes the second order approximation of the

function. Though such optimal learning rates could im-
prove the convergence at every point, it also adds an ad-
ditional computation in each iteration.

5.13.3 Better Update Rule

Let us also see if there is a better update rule. i.e., is
there a better s?

Let us revisit:

J(wk+1) = J(wk) + sTrJ +
1

2
sTHs

Di↵erentiating with respect to s and equating to zero:

rJ+Hs = 0

Or
s = �H�1rJ

This leads to a better update rule known as Newton’s
updates.

Q: Write the psudocode for the newtons method for
optimization.

Newton’s method is known to provide faster conver-
gence for the optimization. Indeed the second order ap-
proximations we use here is more accurrate than the first
order one.

Q: However, Newton’s method is not very popular in
practice. Why is this? You will see plenty of discussions
online. Read and appreciate.



5.14 Discussions

Gradient descent algorithms are the most popular and
the most e↵ective ones to train many machine learning
models (including deep neural networks). The analysis
we had here is quite minimal. Deeper understanding is
good to have. If you are interested in this line, here are
two references (second one a bit more advanced).

• Leon Bottou, ”Stochastic Gradient Descent Tricks,
2012

• Leon Bottou, Frank E. Curtis, Jorge Nocedal “Op-
timization Methods for Large-Scale Machine Learn-
ing”, 2018

I advise you to read the first, even if you do not under-
stand everything. Second is for people who can walk that
extra mile. Both are beyond the scope of this course, and
the exams for sure.
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